cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 26 results. Next

A287050 Square array read by antidiagonals upwards: M(n,k) is the initial occurrence of first prime p1 of consecutive primes p1, p2, where p2 - p1 = 2*k, and p1, p2 span a multiple of 10^n, n>=1, k>=1.

Original entry on oeis.org

29, 599, 7, 2999, 97, 47, 179999, 1999, 1097, 89, 23999999, 69997, 21997, 1193, 139, 23999999, 199999, 369997, 23993, 691, 199, 29999999, 19999999, 3199997, 149993, 10993, 199, 113, 17399999999, 19999999, 6999997, 1199999, 139999, 997, 293, 1831
Offset: 1

Views

Author

Hartmut F. W. Hoft, May 18 2017

Keywords

Comments

The unit digits of the numbers in the matrix representation M(n,k) are 9's for column 1, 7's or 9's for column 2, 7's for column 3, 3's or 9's for column 4, and 1's, 3's, 7's or 9's for column 5.
The following matrix terms appear as first terms in sequence
A060229(1) = M(1,1)
A288021(1) = M(1,2)
A288022(1) = M(1,3)
A288024(1) = M(1,4)
A031928(1) = M(1,5)
A158277(1) = M(2,1)
A160440(1) = M(2,2)
A160370(1) = M(2,3)
A287049(1) = M(2,4)
A160500(1) = M(2,5)
A158861(1) = M(3,1).

Examples

			The matrix representation of the sequence with row n indicating the spanned power of 10 and column k indicating the difference of 2*k between the first pair of consecutive primes spanning a multiple of 10^n:
--------------------------------------------------------------------------
n\k   1             2             3             4            5
--------------------------------------------------------------------------
1 |   29            7             47            89           139
2 |   599           97            1097          1193         691
3 |   2999          1999          21997         23993        10993
4 |   179999        69997         369997        149993       139999
5 |   23999999      199999        3199997       1199999      1999993
6 |   23999999      19999999      6999997       38999993     1999993
7 |   29999999      19999999      159999997     659999999    379999999
8 |   17399999999   7699999999    9399999997    8999999993   499999993
9 |   92999999999   135999999997  85999999997   8999999993   28999999999
10|   569999999999  519999999997  369999999997  29999999993  819999999997
...
Every column in the matrix is nondecreasing.
For the first and fourth columns, ceiling(M[n,1]/10^n) and ceiling(M[n,4]/10^n) are divisible by 3, for all n>=1 (see A158277 and A287049).
		

Crossrefs

Formula

M(n,k) = min( p_i : p_(i+1) - p_i = 2*k, p_i and p_(i+1) consecutive primes and p_i < m*10^n < p_(i+1) for some integer m) where p_j is the j-th prime, n>=1 and k>=1.

A333200 Rectangular array read by antidiagonals: row n shows the primes p(k) such that p(k) = p(k-1) + 2n, with 2 prefixed to row 1.

Original entry on oeis.org

2, 3, 11, 5, 17, 29, 7, 23, 37, 97, 13, 41, 53, 367, 149, 19, 47, 59, 397, 191, 211, 31, 71, 67, 409, 251, 223, 127, 43, 83, 79, 457, 293, 479, 307, 1847, 61, 101, 89, 487, 347, 521, 331, 1949, 541, 73, 107, 137, 499, 419, 631, 787, 2129, 1087, 907, 103, 113
Offset: 1

Views

Author

Clark Kimberling, May 09 2020

Keywords

Comments

Every prime occurs exactly once.
Row 1: A001632, except for initial term
Row 2: A046132
Row 3: A031925
Row 4: A031927
Row 5: A031929
Column 1: A006512, beginning with 5,7,13

Examples

			Northwest corner:
    2   3     5    7   13   19   31   43   61   73  103
   11   17   23   41   47   71   83  101  107  113  131
   29   37   53   59   67   79   89  137  157  163  173
   97  367  397  409  457  487  499  691  709  727  751
  149  191  251  293  347  419  431  557  587  641  701
		

Crossrefs

Programs

  • Mathematica
    z = 2700; p = Prime[Range[z]];
    r[n_] := Select[Range[z], p[[#]] - p[[# - 1]] == 2 n &]; r[1] = Join[{1, 2}, r[1]];
    TableForm[Table[Prime[r[n]], {n, 1, 18}]]  (* A333200, array *)
    TableForm[Table[r[n], {n, 1, 18}]] (* A333201, array *)
    Table[Prime[r[n - k + 1][[k]]], {n, 12}, {k, n, 1, -1}] // Flatten (* A333200, sequence *)
    Table[r[n - k + 1][[k]], {n, 12}, {k, n, 1, -1}] // Flatten (* A333201, sequence *)

A052159 Lower prime of a difference of 6 (G-minor-6 primes) between consecutive primes of 6k+5 form.

Original entry on oeis.org

23, 47, 53, 83, 131, 167, 173, 233, 251, 257, 263, 353, 383, 443, 503, 557, 563, 587, 593, 647, 653, 677, 941, 947, 971, 977, 1013, 1097, 1103, 1181, 1187, 1217, 1223, 1283, 1361, 1367, 1433, 1493, 1553, 1601, 1613, 1901, 1907, 1973, 2063, 2207, 2333
Offset: 1

Views

Author

Labos Elemer, Jan 25 2000

Keywords

Comments

The corresponding larger primes (G-major-6 primes) are also of the form 6k+5.

Examples

			a(1)=23 since a(1) + 6 = 29 is the next prime and 29 = 6*4 + 5.
		

Crossrefs

Programs

  • Mathematica
    Select[Partition[Prime[Range[400]],2,1],#[[2]]-#[[1]]==6&&Mod[#,6]=={5,5}&][[All,1]] (* Harvey P. Dale, Jan 05 2022 *)

Formula

A031924(n) == 5 (mod 6).

A052230 Primes p from A031924 such that A052180(primepi(p)) = 5.

Original entry on oeis.org

23, 31, 53, 61, 83, 151, 173, 233, 263, 271, 331, 353, 383, 443, 503, 541, 563, 571, 593, 601, 653, 751, 991, 1013, 1103, 1223, 1231, 1283, 1291, 1321, 1433, 1493, 1553, 1613, 1621, 1741, 1861, 1973, 2011, 2063, 2131, 2281, 2333, 2341, 2371, 2393, 2543
Offset: 1

Views

Author

Labos Elemer, Feb 01 2000

Keywords

Crossrefs

Programs

  • Maple
    filter:= proc(p) local t,m,flag;
      flag:= false;
      for t from p+1 to p+5 do
        m:= min(numtheory:-factorset(t));
        if m > 5 then return false
        elif m = 5 then flag:= true
        fi
      od;
      flag
    end proc:
    Res:= NULL: count:= 0:
    q:= 1: p:= 2:
    while count < 100 do
      q:= p;
      p:= nextprime(p);
      if p-q = 6 and filter(q) then
        count:= count+1; Res:= Res, q;
      fi
    od:
    Res; # Robert Israel, Aug 12 2018

A126720 Primes p such that p - q = 24, where q is the previous prime before p; or prime numbers preceded by precisely 23 composite numbers.

Original entry on oeis.org

1693, 2203, 4201, 4547, 4783, 5261, 6197, 6421, 6761, 7103, 7393, 7817, 8147, 8353, 9091, 11027, 11657, 11863, 12097, 12143, 13033, 13291, 16057, 16217, 16477, 16787, 16811, 17077, 17707, 18013, 18617, 18661, 19207, 19531, 20507, 22433, 22901
Offset: 1

Views

Author

Artur Jasinski, Feb 13 2007

Keywords

Crossrefs

Programs

  • Mathematica
    a = {}; Do[If[Prime[x + 1] - Prime[x] == 24, AppendTo[a, Prime[x + 1]]], {x, 1, 10000}]; a
  • PARI
    q=2; forprime(p=3,1e5, if(p-q==24, print1(p", ")); q=p) \\ Charles R Greathouse IV, Mar 13 2020

Formula

a(n) = A098974(n) + 24. - Amiram Eldar, Mar 13 2020
a(n) >> n log^2 n. - Charles R Greathouse IV, Mar 13 2020

A271232 Composite integers sandwiched between primes p, q with q-p = 6.

Original entry on oeis.org

24, 25, 26, 27, 28, 32, 33, 34, 35, 36, 48, 49, 50, 51, 52, 54, 55, 56, 57, 58, 62, 63, 64, 65, 66, 74, 75, 76, 77, 78, 84, 85, 86, 87, 88, 132, 133, 134, 135, 136, 152, 153, 154, 155, 156, 158, 159, 160, 161, 162, 168, 169, 170, 171, 172, 174, 175, 176, 177, 178
Offset: 1

Views

Author

Michel Marcus, Apr 02 2016

Keywords

Examples

			The composite number 24 is sandwiched between consecutive primes 23 and 29, and 29-23=6, so 24 is a member of the sequence.
		

Crossrefs

Programs

  • PARI
    lista(nn) = {forcomposite(c=4, nn, if ((p=precprime(c)) && ((nextprime(c)-p)==6), print1(c, ", ")););}

A052229 a(n) is the first prime p from A031924 such that A052180(primepi(p)) = prime(n).

Original entry on oeis.org

23, 47, 251, 167, 727, 433, 941, 1187, 1453, 1367, 2417, 4597, 2207, 3761, 4657, 4451, 5557, 6317, 7517, 8923, 9043, 17707, 15227, 12823, 10607, 33487, 28663, 29717, 50417, 31567, 24793, 24043, 28753, 28837, 29983, 29173, 59951, 45497
Offset: 3

Views

Author

Labos Elemer, Feb 01 2000

Keywords

Crossrefs

A052231 Primes p from A031924 such that A052180(primepi(p)) = 7.

Original entry on oeis.org

47, 73, 131, 157, 257, 367, 677, 971, 1097, 1123, 1181, 1543, 1601, 1753, 2383, 2441, 2467, 2677, 3307, 3407, 3617, 3727, 3911, 4357, 4457, 4903, 4987, 5113, 5297, 5381, 5407, 5743, 5801, 6037, 6373, 6977, 7187, 7213, 7481, 7717, 7817, 7901, 7927, 8053
Offset: 1

Views

Author

Labos Elemer, Feb 01 2000

Keywords

Crossrefs

A052232 Primes p from A031924 such that A052180(primepi(p)) = 11.

Original entry on oeis.org

251, 647, 733, 977, 1063, 1657, 1901, 1987, 2713, 2957, 3637, 4211, 4871, 4937, 5683, 5861, 6257, 6673, 7247, 7577, 8831, 9491, 9643, 11801, 11953, 12197, 12613, 13121, 13451, 14923, 15101, 15187, 15761, 15913, 16421, 16487, 18223, 18797
Offset: 1

Views

Author

Labos Elemer, Feb 01 2000

Keywords

Crossrefs

A052233 Primes p from A031924 such that A052180(primepi(p)) = 13.

Original entry on oeis.org

167, 373, 557, 607, 947, 1777, 2351, 2897, 4507, 5081, 5443, 5471, 6067, 7237, 8747, 9343, 9967, 10903, 11087, 12491, 12697, 13037, 14051, 15767, 15817, 16001, 16363, 16547, 16937, 16987, 17327, 19483, 21277, 24971, 26687, 26921, 30197, 30637
Offset: 1

Views

Author

Labos Elemer, Feb 01 2000

Keywords

Crossrefs

Previous Showing 11-20 of 26 results. Next