cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-15 of 15 results.

A351340 a(n) = Sum_{k=0..n} n^k * k^(n-k).

Original entry on oeis.org

1, 1, 6, 48, 516, 6955, 112686, 2132634, 46167560, 1125116901, 30481672610, 908760877244, 29565986232396, 1042354163621927, 39584173937284438, 1610922147768721590, 69940319175066857488, 3226793787576474492657, 157649292247463953189578
Offset: 0

Views

Author

Seiichi Manyama, Feb 08 2022

Keywords

Crossrefs

Main diagonal of A351339.

Programs

  • Mathematica
    a[0] = 1; a[n_] := Sum[n^k * k^(n - k), {k, 0, n}]; Array[a, 20, 0] (* Amiram Eldar, Feb 08 2022 *)
  • PARI
    a(n) = sum(k=0, n, n^k*k^(n-k));

Formula

a(n) = [x^n] Sum_{k>=0} (n*x)^k/(1 - k*x).
a(n) ~ c * n^(n + 1/2), where c = sqrt(Pi)/2. - Vaclav Kotesovec, Feb 09 2022

A101753 Numbers m such that Sum_{k=0..m} m^k is prime.

Original entry on oeis.org

1, 2, 6, 126, 8598
Offset: 1

Views

Author

Mark Hudson (mrmarkhudson(AT)hotmail.com), Dec 15 2004

Keywords

Comments

Value of sum for m = 126 has been checked to be probably prime with the isprime functions of PARI and Maple V. Also checked with ECM - see link.
Note that m+1 must be prime and hence a(n) = A088856(n) - 1. Another way to compute the number is (m^(m + 1) - 1)/(m - 1). - T. D. Noe, Dec 15 2004
Value of sum for m = 126 has been certified prime with Primo. - Ryan Propper, Jul 11 2005

Examples

			The number 6 is in this sequence because 6^0 + 6^1 + 6^2 + 6^3 + 6^4 + 6^5 + 6^6 = (6^7 - 1)/5 = 55987 is prime.
		

Crossrefs

Cf. A031973.
Cf. A088856 (primes p such that cyclotomic(p,p-1) is prime).

Formula

a(n) = A088856(n) - 1.

Extensions

One more term from T. D. Noe, Dec 15 2004
Edited by Thomas Ordowski, Sep 02 2021

A349961 a(n) = Sum_{k=0..n} (2*n)^k.

Original entry on oeis.org

1, 3, 21, 259, 4681, 111111, 3257437, 113522235, 4581298449, 210027483919, 10778947368421, 612142982430915, 38108188628928601, 2580398988131886039, 188802050194014479853, 14843696896551724137931, 1247923426698972051309601, 111713733654631566667971615
Offset: 0

Views

Author

Seiichi Manyama, Dec 07 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[n_] := Sum[(2*n)^k, {k, 0, n}]; Array[a, 18, 0] (* Amiram Eldar, Dec 07 2021 *)
  • PARI
    a(n) = sum(k=0, n, (2*n)^k);
    
  • PARI
    a(n) = ((2*n)^(n+1)-1)/(2*n-1);

Formula

a(n) = ((2*n)^(n+1) - 1)/(2*n - 1).

A349928 a(n) = Sum_{k=0..n} (k+n)^k.

Original entry on oeis.org

1, 3, 20, 246, 4481, 107129, 3157836, 110504876, 4473749677, 205615442135, 10574135574388, 601527803412298, 37500537926181449, 2542321872054610333, 186209553386691383388, 14653121207168215024624, 1232879877057607865696085, 110444572988776439826640683
Offset: 0

Views

Author

Seiichi Manyama, Dec 05 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[n_] := Sum[(k + n)^k, {k, 0, n}]; Array[a, 18, 0] (* Amiram Eldar, Dec 05 2021 *)
  • PARI
    a(n) = sum(k=0, n, (k+n)^k);

Formula

a(n) ~ 2^n * n^n. - Vaclav Kotesovec, Dec 06 2021

A364870 Array read by ascending antidiagonals: A(n, k) = (n + k)^n, with k >= 0.

Original entry on oeis.org

1, 1, 1, 4, 2, 1, 27, 9, 3, 1, 256, 64, 16, 4, 1, 3125, 625, 125, 25, 5, 1, 46656, 7776, 1296, 216, 36, 6, 1, 823543, 117649, 16807, 2401, 343, 49, 7, 1, 16777216, 2097152, 262144, 32768, 4096, 512, 64, 8, 1, 387420489, 43046721, 4782969, 531441, 59049, 6561, 729, 81, 9, 1
Offset: 0

Views

Author

Stefano Spezia, Aug 11 2023

Keywords

Examples

			The array begins:
     1,    1,     1,     1,     1,      1, ...
     1,    2,     3,     4,     5,      6, ...
     4,    9,    16,    25,    36,     49, ...
    27,   64,   125,   216,   343,    512, ...
   256,  625,  1296,  2401,  4096,   6561, ...
  3125, 7776, 16807, 32768, 59049, 100000, ...
  ...
		

Crossrefs

Cf. A000012 (n=0), A000169, A000272, A000312 (k=0), A007830 (k=3), A008785 (k=4), A008786 (k=5), A008787 (k=6), A031973 (antidiagonal sums), A052746 (2nd superdiagonal), A052750, A062971 (main diagonal), A079901 (read by descending antidiagonals), A085527 (1st superdiagonal), A085528 (1st subdiagonal), A085532, A099753.

Programs

  • Mathematica
    A[n_,k_]:=(n+k)^n; Join[{1},Table[A[n-k,k],{n,9},{k,0,n}]]//Flatten

Formula

E.g.f. of k-th column: LambertW(-x)^k/(x^k*(1 + LambertW(-x))).
Previous Showing 11-15 of 15 results.