cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 252 results. Next

A318516 a(n) = A032742(n) OR n-A032742(n), where OR is bitwise-or (A003986) and A032742 = the largest proper divisor of n.

Original entry on oeis.org

1, 1, 3, 2, 5, 3, 7, 4, 7, 5, 11, 6, 13, 7, 15, 8, 17, 9, 19, 10, 15, 11, 23, 12, 21, 13, 27, 14, 29, 15, 31, 16, 31, 17, 31, 18, 37, 19, 31, 20, 41, 21, 43, 22, 31, 23, 47, 24, 47, 25, 51, 26, 53, 27, 47, 28, 55, 29, 59, 30, 61, 31, 63, 32, 61, 33, 67, 34, 63, 35, 71, 36, 73, 37, 59, 38, 75, 39, 79, 40, 63, 41, 83, 42
Offset: 1

Views

Author

Antti Karttunen, Aug 28 2018

Keywords

Crossrefs

Programs

Formula

a(n) = A003986(A032742(n), A060681(n)).
a(n) = n - A318518(n).

A318518 a(n) = A032742(n) AND n-A032742(n), where AND is bitwise-and (A004198) and A032742 = the largest proper divisor of n.

Original entry on oeis.org

0, 1, 0, 2, 0, 3, 0, 4, 2, 5, 0, 6, 0, 7, 0, 8, 0, 9, 0, 10, 6, 11, 0, 12, 4, 13, 0, 14, 0, 15, 0, 16, 2, 17, 4, 18, 0, 19, 8, 20, 0, 21, 0, 22, 14, 23, 0, 24, 2, 25, 0, 26, 0, 27, 8, 28, 2, 29, 0, 30, 0, 31, 0, 32, 4, 33, 0, 34, 6, 35, 0, 36, 0, 37, 16, 38, 2, 39, 0, 40, 18, 41, 0, 42, 0, 43, 24, 44, 0, 45, 12, 46, 30, 47, 0, 48, 0, 49, 0, 50, 0, 51, 0
Offset: 1

Views

Author

Antti Karttunen, Aug 28 2018

Keywords

Crossrefs

Programs

Formula

a(n) = A004198(A032742(n), A060681(n)).
a(n) = n - A318516(n) = (n - A318517(n))/2.

A319714 Filter sequence combining the largest proper divisor of n (A032742) with n's residue modulo 4 (A010873).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 3, 7, 8, 9, 3, 10, 5, 11, 12, 13, 5, 14, 3, 15, 16, 17, 3, 18, 19, 20, 21, 22, 5, 23, 3, 24, 25, 26, 27, 28, 5, 29, 30, 31, 5, 32, 3, 33, 34, 35, 3, 36, 16, 37, 38, 39, 5, 40, 41, 42, 43, 44, 3, 45, 5, 46, 47, 48, 49, 50, 3, 51, 52, 53, 3, 54, 5, 55, 56, 57, 25, 58, 3, 59, 60, 61, 3, 62, 63, 64, 65, 66, 5, 67, 30, 68, 69, 70, 71, 72, 5, 73
Offset: 1

Views

Author

Antti Karttunen, Sep 26 2018

Keywords

Comments

Restricted growth sequence transform of A286474, or equally, of A286473.

Crossrefs

Programs

  • PARI
    up_to = 100000;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A032742(n) = if(1==n,n,n/vecmin(factor(n)[,1]));
    A286474(n) = if(1==n,n,(4*A032742(n) + (n % 4)));
    v319714 = rgs_transform(vector(up_to,n,A286474(n)));
    A319714(n) = v319714[n];

A326068 a(n) = n - sigma(A032742(n)), where sigma is the sum of divisors of n and A032742 gives the largest proper divisor of n.

Original entry on oeis.org

0, 1, 2, 1, 4, 2, 6, 1, 5, 4, 10, 0, 12, 6, 9, 1, 16, 5, 18, 2, 13, 10, 22, -4, 19, 12, 14, 4, 28, 6, 30, 1, 21, 16, 27, -3, 36, 18, 25, -2, 40, 10, 42, 8, 21, 22, 46, -12, 41, 19, 33, 10, 52, 14, 43, 0, 37, 28, 58, -12, 60, 30, 31, 1, 51, 18, 66, 14, 45, 22, 70, -19, 72, 36, 44, 16, 65, 22, 78, -10, 41, 40, 82, -12, 67, 42, 57, 4, 88, 12
Offset: 1

Views

Author

Antti Karttunen, Jun 06 2019

Keywords

Crossrefs

Programs

Formula

a(n) = n - A326065(n) = n - A000203(A032742(n)).
a(n) = A326067(n) + A033879(n).
Sum_{k=1..n} a(k) ~ ((1 - zeta(2) * c)/2) * n^2, where c = Sum_{p prime} ((p/((p-1)^2*(p+1))) * Product_{prime q <= p} ((q-1)^2*(q+1)/q^3)) = 0.307613599749... . - Amiram Eldar, Dec 21 2024

A326139 a(n) = gcd(A032742(n), A302042(n)).

Original entry on oeis.org

1, 1, 1, 2, 1, 3, 1, 4, 3, 5, 1, 6, 1, 7, 5, 8, 1, 9, 1, 10, 1, 11, 1, 12, 5, 13, 1, 14, 1, 15, 1, 16, 1, 17, 7, 18, 1, 19, 1, 20, 1, 21, 1, 22, 3, 23, 1, 24, 7, 25, 1, 26, 1, 27, 1, 28, 1, 29, 1, 30, 1, 31, 1, 32, 1, 33, 1, 34, 1, 35, 1, 36, 1, 37, 1, 38, 11, 39, 1, 40, 3, 41, 1, 42, 1, 43, 1, 44, 1, 45, 1, 46, 1, 47, 1, 48, 1, 49, 1, 50, 1, 51, 1, 52, 1
Offset: 1

Views

Author

Antti Karttunen, Aug 23 2019

Keywords

Crossrefs

Programs

  • PARI
    up_to = 65537;
    ordinal_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), pt); for(i=1, length(invec), if(mapisdefined(om,invec[i]), pt = mapget(om, invec[i]), pt = 0); outvec[i] = (1+pt); mapput(om,invec[i],(1+pt))); outvec; };
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A020639(n) = if(n>1, if(n>n=factor(n, 0)[1, 1], n, factor(n)[1, 1]), 1); \\ From A020639
    A032742(n) = (n/A020639(n));
    v078898 = ordinal_transform(vector(up_to,n,A020639(n)));
    A078898(n) = v078898[n];
    A302042(n) = if((1==n)||isprime(n),1,my(c = A078898(n), p = prime(-1+primepi(A020639(n))+primepi(A020639(c))), d = A078898(c), k=0); while(d, k++; if((1==k)||(A020639(k)>=p),d -= 1)); (k*p));
    A326139(n) = gcd(A032742(n),A302042(n));

Formula

a(n) = gcd(A032742(n), A302042(n)).

A326190 Length of the shortest path to 1 when starting from x=n and on each iteration step one may always choose either transition x -> A032742(x) or x -> A302042(x).

Original entry on oeis.org

0, 1, 1, 2, 1, 2, 1, 3, 2, 2, 1, 3, 1, 2, 2, 4, 1, 3, 1, 3, 2, 2, 1, 4, 2, 2, 2, 3, 1, 3, 1, 5, 2, 2, 2, 4, 1, 2, 2, 4, 1, 3, 1, 3, 3, 2, 1, 5, 2, 3, 2, 3, 1, 3, 2, 4, 2, 2, 1, 4, 1, 2, 2, 6, 2, 3, 1, 3, 2, 3, 1, 5, 1, 2, 2, 3, 2, 3, 1, 5, 3, 2, 1, 4, 2, 2, 2, 4, 1, 4, 2, 3, 2, 2, 2, 6, 1, 3, 2, 4, 1, 3, 1, 4, 3
Offset: 1

Views

Author

Antti Karttunen, Aug 23 2019

Keywords

Examples

			The directed acyclic graph whose unique root is 153 (illustrated below), spans the following seven numbers [1, 5, 17, 25, 51, 75, 153], as A032742(153) = 51, A302042(153) = 75, A032742(51) = 17, A302042(51) = 25, A032742(75) = 25, A302042(75) = 15, A032742(25) = A302042(25) = 5, and A032742(17) = A302042(17) = A032742(5) = A302042(5) = 1. The length of shortest path(s) from 153 to 1 is 3 (there are actually two shortest paths: 153 -> 51 -> 17 -> 1 and 153 -> 75 -> 17 -> 1), thus a(153) = 3.
.
        153
       /  \
      /    \
     51    75
     / \  /  \
    /   17    \
    \    |    /
     \   1   /
      \     /
       \   /
        25
         |
         5
         |
         1
		

Crossrefs

Programs

  • PARI
    up_to = 65537;
    ordinal_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), pt); for(i=1, length(invec), if(mapisdefined(om,invec[i]), pt = mapget(om, invec[i]), pt = 0); outvec[i] = (1+pt); mapput(om,invec[i],(1+pt))); outvec; };
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A020639(n) = if(n>1, if(n>n=factor(n, 0)[1, 1], n, factor(n)[1, 1]), 1); \\ From A020639
    A032742(n) = (n/A020639(n));
    v078898 = ordinal_transform(vector(up_to,n,A020639(n)));
    A078898(n) = v078898[n];
    A302042(n) = if((1==n)||isprime(n),1,my(c = A078898(n), p = prime(-1+primepi(A020639(n))+primepi(A020639(c))), d = A078898(c), k=0); while(d, k++; if((1==k)||(A020639(k)>=p),d -= 1)); (k*p));
    A326190(n) = if(1==n,0,1+min(A326190(A032742(n)), A326190(A302042(n))));
    \\ Somewhat faster version:
    memo302042 = Map();
    A302042(n) = if((1==n)||isprime(n),1,my(v); if(mapisdefined(memo302042, n, &v), v, my(c = A078898(n), p = prime(-1+primepi(A020639(n))+primepi(A020639(c))), d = A078898(c), k=0); while(d, k++; if((1==k)||(A020639(k)>=p),d -= 1)); v=(k*p); mapput(memo302042,n,v); (v)));
    A326190list(up_to) = { my(v=vector(up_to)); v[1] = 0; for(n=2,up_to, v[n] = 1+min(v[A032742(n)], v[A302042(n)])); (v); };
    v326190 = A326190list(up_to);
    A326190(n) = v326190[n];

Formula

a(1) = 0; for n > 1, a(n) = 1 + min(a(A032742(n)), a(A302042(n))).
a(n) <= min(A001222(n),A253557(n)) <= max(A001222(n),A253557(n)) <= A326191(n) <= A326189(n).

A326191 Length of the longest path to 1 when starting from x=n and on each iteration step one may always choose either transition x -> A032742(x) or x -> A302042(x).

Original entry on oeis.org

0, 1, 1, 2, 1, 2, 1, 3, 2, 2, 1, 3, 1, 2, 2, 4, 1, 3, 1, 3, 3, 2, 1, 4, 2, 2, 3, 3, 1, 3, 1, 5, 3, 2, 2, 4, 1, 2, 2, 4, 1, 4, 1, 3, 4, 2, 1, 5, 2, 3, 3, 3, 1, 4, 3, 4, 4, 2, 1, 4, 1, 2, 4, 6, 2, 4, 1, 3, 4, 3, 1, 5, 1, 2, 3, 3, 2, 3, 1, 5, 4, 2, 1, 5, 3, 2, 3, 4, 1, 5, 3, 3, 5, 2, 2, 6, 1, 3, 4, 4, 1, 4, 1, 4, 4
Offset: 1

Views

Author

Antti Karttunen, Aug 23 2019

Keywords

Examples

			The directed acyclic graph whose unique root is 153 (illustrated below), spans the following seven numbers [1, 5, 17, 25, 51, 75, 153], as A032742(153) = 51, A302042(153) = 75, A032742(51) = 17, A302042(51) = 25, A032742(75) = 25, A302042(75) = 15, A032742(25) = A302042(25) = 5, and A032742(17) = A302042(17) = A032742(5) = A302042(5) = 1. The length of longest path(s) from 153 to 1 is 4 (there are actually two longest paths: 153 -> 51 -> 25 -> 5 -> 1 and 153 -> 75 -> 25 -> 5 -> 1), thus a(153) = 4.
.
        153
       /  \
      /    \
     51    75
     / \  /  \
    /   17    \
    \    |    /
     \   1   /
      \     /
       \   /
        25
         |
         5
         |
         1
		

Crossrefs

Programs

  • PARI
    up_to = 65537;
    ordinal_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), pt); for(i=1, length(invec), if(mapisdefined(om,invec[i]), pt = mapget(om, invec[i]), pt = 0); outvec[i] = (1+pt); mapput(om,invec[i],(1+pt))); outvec; };
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A020639(n) = if(n>1, if(n>n=factor(n, 0)[1, 1], n, factor(n)[1, 1]), 1); \\ From A020639
    A032742(n) = (n/A020639(n));
    v078898 = ordinal_transform(vector(up_to,n,A020639(n)));
    A078898(n) = v078898[n];
    A302042(n) = if((1==n)||isprime(n),1,my(c = A078898(n), p = prime(-1+primepi(A020639(n))+primepi(A020639(c))), d = A078898(c), k=0); while(d, k++; if((1==k)||(A020639(k)>=p),d -= 1)); (k*p));
    A326191(n) = if(1==n,0,1+max(A326191(A032742(n)), A326191(A302042(n))));
    \\ Slightly faster:
    memo302042 = Map();
    A302042(n) = if((1==n)||isprime(n),1,my(v); if(mapisdefined(memo302042, n, &v), v, my(c = A078898(n), p = prime(-1+primepi(A020639(n))+primepi(A020639(c))), d = A078898(c), k=0); while(d, k++; if((1==k)||(A020639(k)>=p),d -= 1)); v=(k*p); mapput(memo302042,n,v); (v)));
    A326191list(up_to) = { my(v=vector(up_to)); v[1] = 0; for(n=2,up_to, v[n] = 1+max(v[A032742(n)], v[A302042(n)])); (v); };
    v326191 = A326191list(up_to);
    A326191(n) = v326191[n];

Formula

a(1) = 0; for n > 1, a(n) = 1 + max(a(A032742(n)), a(A302042(n))).
A326189(n) >= a(n) >= max(A001222(n), A253557(n)) >= min(A001222(n), A253557(n)) >= A326190(n).

A245729 Composite numbers n = A020639(n) * A032742(n) where the greatest proper divisor A032742(n) is greater than the square of the smallest prime factor A020639(n), and that greatest proper divisor A032742(n) is either a prime or satisfies the same condition (i.e., is itself the term of this sequence).

Original entry on oeis.org

10, 14, 20, 22, 26, 28, 33, 34, 38, 39, 40, 44, 46, 51, 52, 56, 57, 58, 62, 66, 68, 69, 74, 76, 78, 80, 82, 86, 87, 88, 92, 93, 94, 99, 102, 104, 106, 111, 112, 114, 116, 117, 118, 122, 123, 124, 129, 132, 134, 136, 138, 141, 142, 145, 146, 148, 152, 153, 155, 156, 158, 159, 160, 164, 166, 171, 172, 174, 176, 177
Offset: 1

Views

Author

Keywords

Comments

If n is present, then so is also 2*n.
If n = p_1^e_1*p_2^e_2*... with p_1 > p_2 > ..., then n is in this sequence iff p_1^2 > p_2 and e_1 = 1. - Charlie Neder, Jun 13 2019

Examples

			10 = 2*5 is present, because 2^2 < 5 and 5 is a prime.
20 = 2*10 is present, because 2^2 < 10, and 10 itself is present in the sequence.
		

Crossrefs

Subsequence of A088381 and A251727.
Subsequences: A138511, A253569.

Programs

A280495 a(n) = A032742(A250245(n)).

Original entry on oeis.org

1, 1, 1, 2, 1, 3, 1, 4, 3, 5, 1, 6, 1, 7, 5, 8, 1, 9, 1, 10, 9, 11, 1, 12, 5, 13, 7, 14, 1, 15, 1, 16, 13, 17, 7, 18, 1, 19, 21, 20, 1, 27, 1, 22, 11, 23, 1, 24, 7, 25, 25, 26, 1, 21, 13, 28, 33, 29, 1, 30, 1, 31, 19, 32, 19, 39, 1, 34, 37, 35, 1, 36, 1, 37, 17, 38, 11, 63, 1, 40, 15, 41, 1, 54, 31, 43, 45, 44, 1, 33, 17, 46, 57, 47, 37, 48, 1, 49, 27, 50, 1
Offset: 1

Views

Author

Antti Karttunen, Jan 09 2017

Keywords

Crossrefs

Differs from related A280496 and A280498 for the first time at n=33, where a(33) = 13, while A280496(33) = A280498(33) = 15.
Differs from related A280497 for the first time at n=42, where a(42) = 27, while A280497(42) = 21.

Programs

Formula

a(n) = A032742(A250245(n)).
a(n) = A250245(n) / A020639(n). [Because A250245 preserves the smallest prime factor of n.]

A283463 a(n) = A032742(A266645(n)).

Original entry on oeis.org

1, 1, 1, 2, 1, 3, 1, 5, 3, 4, 1, 7, 1, 11, 5, 6, 1, 13, 1, 17, 7, 10, 1, 19, 5, 9, 11, 8, 1, 23, 1, 29, 13, 14, 7, 15, 1, 31, 17, 22, 1, 37, 1, 41, 19, 12, 1, 43, 7, 25, 9, 26, 1, 47, 11, 21, 23, 34, 1, 53, 1, 59, 29, 20, 13, 33, 1, 61, 15, 38, 1, 67, 1, 71, 31, 18, 11, 35, 1, 73, 37, 16, 1, 79, 17, 39, 41, 46, 1, 83, 13, 55, 43, 58, 19, 51
Offset: 1

Views

Author

Antti Karttunen, Mar 08 2017

Keywords

Crossrefs

Programs

  • Mathematica
    f[n_] := Times @@ Power[Which[# == 1, 1, # == 2, 1, True, NextPrime[#, -1]] & /@ First@ #, Last@ #] &@ Transpose@ FactorInteger@ n; g[n_] := If[n == 1, 0, PrimePi@ FactorInteger[n][[1, 1]]]; Function[s, MapIndexed[Function[{m, n}, If[# == 1, 1, Divisors[#][[-2]]] &@ f[Lookup[s, g[n] + 1][[m]] - Boole[n == 1]]][#1, First@ #2] &, #] &@ Map[Position[Lookup[s, g@ #], #][[1, 1]] &, Range@ 120]]@ PositionIndex@ Array[g, 10^4] (* Michael De Vlieger, Mar 09 2017, Version 10 *)
  • Scheme
    (define (A283463 n) (A032742 (A266645 n)))

Formula

a(n) = A032742(A266645(n)).
a(n) = A266645(n) / A020639(n). [Because A266645 preserves the smallest prime factor of n.]
Previous Showing 31-40 of 252 results. Next