cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-37 of 37 results.

A062225 Numbers k such that the smoothly undulating palindromic number (78*10^k - 87)/99 is a prime.

Original entry on oeis.org

3, 5, 21, 27, 95, 2075, 2165, 3047, 3503, 16791, 34883
Offset: 1

Views

Author

Patrick De Geest and Hans Rosenthal (Hans.Rosenthal(AT)t-online.de), Jun 15 2001

Keywords

Comments

Prime versus probable prime status and proofs are given in the author's table.
No further terms < 100000. - Ray Chandler, Aug 17 2011

Examples

			k=21 -> (78*10^21 - 87)/99 = 787878787878787878787.
		

Crossrefs

Extensions

Edited by Ray Chandler, Aug 17 2011

A062226 Numbers k such that the smoothly undulating palindromic number (79*10^k - 97)/99 is a prime.

Original entry on oeis.org

3, 357, 537, 1677, 3057, 51663, 66447
Offset: 1

Views

Author

Patrick De Geest and Hans Rosenthal (Hans.Rosenthal(AT)t-online.de), Jun 15 2001

Keywords

Comments

Prime versus probable prime status and proofs are given in the author's table.
No further terms < 100000. - Ray Chandler, Aug 17 2011

Examples

			k=357 -> (79*10^357 - 97)/99 = 7979797...7979797.
		

Crossrefs

Extensions

a(6)=51663 from Ray Chandler, Nov 11 2010
a(7)=66447 from Ray Chandler, Jan 30 2011
Edited by Ray Chandler, Aug 17 2011

A062227 Numbers k such that the smoothly undulating palindromic number (91*10^k - 19)/99 is a prime.

Original entry on oeis.org

3, 9, 11, 17, 23, 25229
Offset: 1

Views

Author

Patrick De Geest and Hans Rosenthal (Hans.Rosenthal(AT)t-online.de), Jun 15 2001

Keywords

Comments

Prime versus probable prime status and proofs are given in the author's table.
No further terms < 100000. - Ray Chandler, Aug 17 2011

Examples

			k=23 -> (91*10^23 - 19)/99 = 91919191919191919191919.
		

Crossrefs

Extensions

Edited by Ray Chandler, Aug 17 2011

A062228 Numbers k such that the smoothly undulating palindromic number (92*10^k - 29)/99 is a prime.

Original entry on oeis.org

3, 9, 195, 515, 857, 11393
Offset: 1

Views

Author

Patrick De Geest and Hans Rosenthal (Hans.Rosenthal(AT)t-online.de), Jun 15 2001

Keywords

Comments

Prime versus probable prime status and proofs are given in the author's table.
No further terms < 100000. - Ray Chandler, Aug 17 2011

Examples

			k=9 -> (92*10^9 - 29)/99 = 929292929.
		

Crossrefs

Extensions

Edited by Ray Chandler, Aug 17 2011

A062229 Numbers k such that the smoothly undulating palindromic number (94*10^k - 49)/99 is a prime.

Original entry on oeis.org

5, 17, 65, 143, 551, 92981
Offset: 1

Views

Author

Patrick De Geest and Hans Rosenthal (Hans.Rosenthal(AT)t-online.de), Jun 15 2001

Keywords

Comments

Prime versus probable prime status and proofs are given in the author's table.
No further terms < 100000. - Ray Chandler, Aug 17 2011

Examples

			k=17 -> (94*10^17 - 49)/99 = 94949494949494949.
		

Crossrefs

Extensions

a(6) from Ray Chandler, Jul 29 2011
Edited by Ray Chandler, Aug 17 2011

A062230 Numbers k such that the smoothly undulating palindromic number (95*10^k - 59)/99 is a prime.

Original entry on oeis.org

5, 17, 209, 1295
Offset: 1

Views

Author

Patrick De Geest and Hans Rosenthal (Hans.Rosenthal(AT)t-online.de), Jun 15 2001

Keywords

Comments

Prime versus probable prime status and proofs are given in the author's table.
No further terms < 100000. - Ray Chandler, Aug 17 2011

Examples

			k=17 -> (95*10^17 - 59)/99 = 95959595959595959.
		

Crossrefs

Extensions

Edited by Ray Chandler, Aug 17 2011

A242846 Palindromic primes of the form ababa...aba containing only the digits 1 and 3.

Original entry on oeis.org

131, 313, 1313131313131313131313131, 313131313131313131313131313131313131313131313131313
Offset: 1

Views

Author

Felix Fröhlich, May 23 2014

Keywords

Comments

The next two terms both start with 3 and have 83 and 225 digits, respectively. Those are the only other terms with fewer than 352 digits. Cf. A062216.

Crossrefs

Programs

  • Mathematica
    Module[{nn=60,a,b},a=Table[FromDigits[Join[PadRight[{},2n,{1,3}],{1}]],{n,nn}];b=Table[FromDigits[Join[PadRight[{},2n,{3,1}],{3}]],{n,nn}];Select[Sort[Join[a,b]],PrimeQ]] (* Harvey P. Dale, Sep 07 2020 *)
Previous Showing 31-37 of 37 results.