cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A048341 Equal to the sum of its digits raised to its reversed digits power (0^0=1).

Original entry on oeis.org

1, 48625, 397612
Offset: 0

Views

Author

Patrick De Geest, Feb 15 1999

Keywords

Examples

			48625 = 4^5 + 8^2 + 6^6 + 2^8 + 5^4.
		

Crossrefs

Programs

  • Mathematica
    sdrdp[n_]:=Module[{idn=IntegerDigits[n]},Total[#[[1]]^#[[2]]&/@(Thread[ {idn,Reverse[idn]}]/.{0,0}->{1,1})]]; Select[Range[400000],# == sdrdp[#]&] (* Harvey P. Dale, Jul 31 2013 *)

A282839 Numbers that are equal to the sum of descending numbers raised to their digits' powers.

Original entry on oeis.org

1, 65, 6796
Offset: 1

Views

Author

Shmelev Aleksei, Feb 22 2017

Keywords

Comments

Sequence is complete.

Examples

			1 = 1^1;
65 = 2^6 + 1^5;
6796 = 4^6 + 3^7 + 2^9 + 1^6.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[10^5], # == Total[ Reverse[ Range@ IntegerLength@ #]^ IntegerDigits@ #] &] (* Giovanni Resta, Feb 23 2017 *)
  • PARI
    isok(n) = my(d=digits(n)); sum(k=1, #d, (#d-k+1)^d[k]) == n; \\ Michel Marcus, Feb 24 2017
  • VBA
    sub calcul()
    sheets("Result").select
    range("A1").select
    for i=1 to 10^13
    sum=0
    for k=1 to len(i)
    sum=sum+(len(i)-k+1)^mid(i,k,1)
    next
    if i=sum then
    activecell.value=i
    activesheet.offset(1,0).select
    end if
    next
    end sub
    
Previous Showing 11-12 of 12 results.