cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A033111 Number of 9's when n is written in base b for 2<=b<=n+1.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 2, 2, 1, 3, 1, 2, 2, 3, 1, 3, 1, 3, 2, 2, 1, 4, 1, 3, 2, 3, 1, 3, 2, 3, 2, 2, 1, 6, 1, 2, 2, 3, 2, 4, 1, 3, 2, 4, 1, 5, 1, 2, 3, 3, 2, 4, 1, 5, 3
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    f[n_] := Count[Flatten@ Table[ IntegerDigits[n, b], {b, 2, n + 1}], 9]; Array[f, 90](* Robert G. Wilson v, Nov 14 2012 *)

A309891 a(n) is the total number of trailing zeros in the representations of n over all bases b >= 2.

Original entry on oeis.org

0, 1, 1, 3, 1, 3, 1, 5, 3, 3, 1, 6, 1, 3, 3, 8, 1, 6, 1, 6, 3, 3, 1, 9, 3, 3, 5, 6, 1, 7, 1, 10, 3, 3, 3, 11, 1, 3, 3, 9, 1, 7, 1, 6, 6, 3, 1, 13, 3, 6, 3, 6, 1, 9, 3, 9, 3, 3, 1, 12, 1, 3, 6, 14, 3, 7, 1, 6, 3, 7, 1, 15, 1, 3, 6, 6, 3, 7, 1, 13, 8, 3, 1, 12
Offset: 1

Views

Author

Rémy Sigrist, Aug 21 2019

Keywords

Comments

a(n) depends only on the prime signature of n.
a(n) is the sum of the k-adic valuations of n for k >= 2. - Friedjof Tellkamp, Jan 25 2025

Examples

			For n = 12: 12 has 2 trailing zeros in base 2 (1100), 1 trailing zero in bases 3, 4, 6 and 12 (110, 30, 20, 10) and no trailing zero in other bases, hence a(12) = 1*2 + 4*1 = 6.
		

Crossrefs

Programs

  • Mathematica
    Table[DivisorSum[n, IntegerExponent[n, #] &, # > 1 &], {n, 84}] (* Jon Maiga, Aug 25 2019 *)
  • PARI
    a(n) = sumdiv(n, d, if (d>1, valuation(n,d), 0))
    
  • PARI
    a(n) = {if(n == 1, return(0)); my(f = factor(n)[, 2], res = 0, t = 2, of = f, nf = f >> 1, nd(v) = prod(i = 1, #v, v[i] + 1)); while(Set(of) != [0], res += (nd(of) - nd(nf)) * (t-1); of = nf; t++; nf = f \ t); res} \\ David A. Corneth, Aug 22 2019

Formula

a(n) = Sum_{d|n, d>1} A286561(n,d), where A286561 gives the d-valuation of n.
a(p) = 1 for any prime number p.
a(p^k) = A006218(k) for any k >= 0 and any prime number p.
a(n) = 2^A001221(n) - 1 for any squarefree number n.
a(n) = 3 for any semiprime number n.
a(m*n) >= a(m) + a(n).
a(n) >= A007814(n) + A007949(n) + A235127(n) + A112765(n) + A122841(n) + A214411(n) + A244413(n).
a(n) = A056239(A293514(n)). - Antti Karttunen, Aug 22 2019
a(n) <= A033093(n). - Michel Marcus, Aug 22 2019
a(n) = A169594(n) - 1. - Jon Maiga, Aug 25 2019
From Friedjof Tellkamp, Feb 27 2024: (Start)
G.f.: Sum_{k>=2, j>=1} x^(k^j)/(1-x^(k^j)).
Dirichlet g.f.: zeta(s) * Sum_{k>=1} (zeta(k*s) - 1).
Sum_{n>=1} a(n)/n^2 = Pi^2/8 (A111003). (End)

A077268 Number of bases in which n requires at least one zero to be written.

Original entry on oeis.org

0, 1, 1, 2, 2, 3, 1, 3, 3, 4, 3, 5, 2, 3, 3, 4, 3, 6, 4, 6, 4, 3, 2, 7, 3, 4, 5, 7, 4, 7, 2, 6, 5, 5, 6, 8, 4, 5, 5, 8, 3, 7, 2, 5, 6, 4, 3, 9, 4, 7, 7, 7, 4, 9, 6, 8, 4, 4, 3, 11, 3, 4, 5, 7, 7, 9, 4, 6, 6, 9, 4, 11, 5, 6, 8, 7, 7, 9, 4, 9, 6, 6, 5, 12, 6, 5, 5, 9, 4, 11, 5, 6, 4, 4, 5, 11, 4, 7, 8, 10, 6
Offset: 1

Views

Author

Henry Bottomley, Nov 01 2002

Keywords

Examples

			a(9)=3 since it requires zeros when written in bases 2, 3 or 9 (as 1001, 100 or 10 respectively).
		

Crossrefs

Programs

  • PARI
    a(n) = sum(i=2, n, ! vecmin(digits(n, i))); \\ Michel Marcus, Jul 09 2014
  • Sage
    def A077268(n) : return sum(0 in n.digits(m) for m in range(2,n+1)) # Eric M. Schmidt, Jul 09 2014
    

A077266 Triangle of number of zeros when n is written in base k (2 <= k <= n).

Original entry on oeis.org

1, 0, 1, 2, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 3, 0, 1, 0, 0, 0, 1, 2, 2, 0, 0, 0, 0, 0, 1, 2, 1, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 2, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1
Offset: 2

Views

Author

Henry Bottomley, Nov 01 2002

Keywords

Examples

			Rows start:
  1;
  0,1;
  2,0,1;
  1,0,0,1;
  1,1,0,0,1;
  0,0,0,0,0,1;
  3,0,1,0,0,0,1;
  2,2,0,0,0,0,0,1;
  etc.
9 can be written in bases 2-9 as: 1001, 100, 21, 14, 13, 12, 11 and 10, in which case the numbers of zeros are 2,2,0,0,0,0,0,1.
		

Crossrefs

Columns include A023416 and A077267. Row sums are A033093, row maxima are A062842, number of positive terms in each row are A077268.

Programs

  • Mathematica
    Table[Count[#,0]&/@IntegerDigits[n,Range[2,n]],{n,2,15}]//Flatten (* Harvey P. Dale, Jun 02 2025 *)
  • PARI
    T(n, k) = #select(x->(x==0), digits(n, k));
    row(n) = vector(n-1, k, T(n,k+1));
    tabl(nn) = for (n=2, nn, print(row(n))); \\ Michel Marcus, Sep 02 2020

Formula

T(nk, k)=T(n, k)+1; T(nk+m, k)=T(n, k) if 0
Previous Showing 11-14 of 14 results.