cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A052038 First nonzero digit in expansion of 1/n.

Original entry on oeis.org

1, 5, 3, 2, 2, 1, 1, 1, 1, 1, 9, 8, 7, 7, 6, 6, 5, 5, 5, 5, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 9, 9, 9, 9, 9
Offset: 1

Views

Author

Patrick De Geest, Dec 15 1999

Keywords

Comments

The number of times each digit occurs for numbers < 10^k:
...\a(n)==1.........2.......3........4........5........6........7........8........9
10^k\
1.........5.........2........1........0........1........0........0........0........0
2........55........19........9........5........5........2........2........1........1
3.......555.......186.......92.......55.......39.......26.......19.......15.......12
4......5555......1853......925......555......373......264......197......154......123
5.....55555.....18520.....9258.....5555.....3707.....2645.....1982.....1543.....1234
6....555556....185187....92591....55555....37041....26454....19839....15432....12345
7...5555555...1851854...925924...555555...370375...264549...198410...154321...123456
8..55555555..18518521..9259257..5555555..3703709..2645501..1984124..1543210..1234567
9.555555555.185185188.92592590.55555555.37037043.26455025.19841266.15432099.12345678
...
Inf. ...5/9......5/27.....5/54.....5/90.....1/27........?........?........?........?

Crossrefs

Programs

  • Mathematica
    f[n_] := RealDigits[1/n, 10, 12][[1, 1]]; Array[f, 105]

Formula

a(n) = floor(10^floor(1+log_10(n-1))/n). After 10^k terms the number of times m will have appeared will be about 10^(k+1)/(9*m*(m+1)), e.g., 1 will appear just over 55.5% of the time. - Henry Bottomley, May 11 2001
a(n) = A000030(floor(A011557(k)/n)) for k >= A004218(n). - Reinhard Zumkeller, Feb 27 2011

A278105 a(n) = floor(3/n).

Original entry on oeis.org

3, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Jason Kimberley, Nov 23 2016

Keywords

Crossrefs

This sequence is (ignoring the trailing zeros) the third row of A010766.

Programs

  • Magma
    [3 div n: n in[1..100]];
  • Mathematica
    Table[Floor[3/n], {n, 105}] (* Michael De Vlieger, Nov 24 2016 *)

Formula

a(n) = A033322(n)+A154272(n). - R. J. Mathar, Jun 21 2025

A061861 First two significant digits of 1/n written in decimal.

Original entry on oeis.org

10, 50, 33, 25, 20, 16, 14, 12, 11, 10, 90, 83, 76, 71, 66, 62, 58, 55, 52, 50, 47, 45, 43, 41, 40, 38, 37, 35, 34, 33, 32, 31, 30, 29, 28, 27, 27, 26, 25, 25, 24, 23, 23, 22, 22, 21, 21, 20, 20, 20, 19, 19, 18, 18, 18, 17, 17, 17, 16, 16, 16, 16, 15, 15, 15, 15, 14, 14, 14
Offset: 1

Views

Author

Henry Bottomley, May 11 2001

Keywords

Comments

After 10^k terms the number of times m will have appeared will be about 10^(k+2)/(9*m*(m+1)); e.g., 10 will appear just over 10.1% of the time.

Examples

			a(32)=31 since 1/32 = 0.0312500000...
		

Crossrefs

Programs

  • Mathematica
    Table[FromDigits[RealDigits[1/n,10,2][[1]]],{n,70}] (* Harvey P. Dale, Jan 19 2018 *)

Formula

a(n) = floor(10^floor(2+log_10(n-1))/n).
Previous Showing 11-13 of 13 results.