A185201 10^n - second largest prime less than 10^n.
5, 11, 9, 33, 11, 21, 27, 29, 71, 57, 53, 39, 137, 29, 53, 83, 23, 33, 57, 27, 113, 71, 53, 303, 321, 249, 107, 261, 53, 17, 81, 119, 47, 513, 237, 179, 123, 123, 173, 27, 203, 137, 119, 77, 119, 147, 83, 47, 183, 161, 333, 339, 611, 579
Offset: 1
Keywords
Examples
a(1) = 5 because precprime(10) = 7, and precprime(6) = 5. From _M. F. Hasler_, Jul 19 2024: (Start) Further examples: (where pp = prevprime = A151799) n | pp(pp(10^n)) | a(n) ----+-----------------+------ 1 | 5 | 5 2 | 89 | 11 3 | 991 | 9 4 | 9967 | 33 5 | 99989 | 11 6 | 999979 | 21 7 | 9999973 | 27 8 | 99999971 | 29 9 | 999999929 | 71 10 | 9999999943 | 57 11 | 99999999947 | 53 12 | 999999999961 | 39 13 | 9999999999863 | 137 14 | 99999999999971 | 29 15 | 999999999999947 | 53 (End)
References
- D. E. Knuth, The Art of Computer Programming, Second Edition, Vol. 2, Seminumerical Algorithms, Chapter 4.5.4 Factoring into Primes, Table 1, Page 390, Addison-Wesley, Reading, MA, 1981.
Links
- Robert Israel, Table of n, a(n) for n = 1..1000
Programs
-
Maple
seq(10^n - prevprime(prevprime(10^n)),n=1..100); # Robert Israel, May 28 2017
-
Mathematica
Table[10^n - NextPrime[10^n, -2], {n,1,50}] (* G. C. Greubel, Jun 24 2017 *)
-
PARI
apply( {A185201(n)=10^n-precprime(precprime(10^n)-1)}, [1..66]) \\ M. F. Hasler, Jul 19 2024
Formula
a(n) = 10^n - precprime(precprime(10^n)-1)
Comments