cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A267767 Numbers whose base-7 representation is a square when read in base 10.

Original entry on oeis.org

0, 1, 4, 13, 19, 27, 46, 49, 64, 81, 117, 139, 165, 190, 196, 225, 313, 361, 433, 460, 571, 603, 637, 705, 748, 837, 883, 931, 981, 1048, 1105, 1222, 1323, 1489, 1560, 1684, 1744, 2028, 2185, 2254, 2346, 2401, 2500, 2601, 2763, 2869, 3084, 3136, 3249, 3364, 3547, 3667, 3865, 3969, 4096
Offset: 1

Views

Author

M. F. Hasler, Jan 20 2016

Keywords

Comments

Trivially includes powers of 49, since 49^k = 100..00_7 = 10^(2k) when read in base 10. Moreover, for any a(n) in the sequence, 49*a(n) is also in the sequence. One could call "primitive" the terms not of this form. These primitive terms include the subsequence 49^k + 2*7^k + 1 = (7^k+1)^2, k > 0, which yields A033934 when written in base 7.

Crossrefs

Cf. A267763 - A267769 for bases 3 through 9. The base-2 analog is A000302 = powers of 4.

Programs

  • Magma
    [n: n in [0..10^4] | IsSquare(Seqint(Intseq(n, 7)))]; // Vincenzo Librandi, Dec 28 2016
  • Mathematica
    Select[Range[0, 2 10^4], IntegerQ@Sqrt@FromDigits@IntegerDigits[#, 7] &] (* Vincenzo Librandi, Dec 28 2016 *)
  • PARI
    is(n,b=7,c=10)=issquare(subst(Pol(digits(n,b)),x,c))
    
  • Python
    A267767_list = [int(s, 7) for s in (str(i**2) for i in range(10**6)) if max(s) < '7'] # Chai Wah Wu, Jan 20 2016
    

A348429 Perfect powers m^k, m >= 1, k >= 2 such that m and m^k both are palindromes.

Original entry on oeis.org

1, 4, 8, 9, 121, 343, 484, 1331, 10201, 12321, 14641, 40804, 44944, 1002001, 1030301, 1234321, 1367631, 4008004, 100020001, 102030201, 104060401, 121242121, 123454321, 125686521, 400080004, 404090404, 1003003001, 10000200001, 10221412201, 12102420121, 12345654321, 40000800004
Offset: 1

Views

Author

Bernard Schott, Oct 18 2021

Keywords

Comments

Complement of A348319 relative to the positive perfect powers A001597.
This sequence is infinite since each square (10^m+1)^2 is a term for m >= 0 and A033934 is a subsequence.
Observation: terms always contain an odd number of digits.
For k = 2, subsequence of palindromes whose square root is a palindrome is A057136 (see A057135).
For k = 3, except for 2201^3 = 10662526601, all known palindromic cubes have a palindromic rootnumber (see A002780 and A002781).
For k = 4, all known integers whose fourth power is a palindrome are also palindromes (see A056810 and subsequence A186080).
For k >= 5, G. J. Simmons conjectured there are no palindromes of the form m^k for k >= 5 and m > 1 (see Simmons link p. 98); according to this conjecture, all the terms are of the form (palindrome)^k, with 2 <= k <= 4.

Examples

			First few terms are equal to 1, 2^2, 2^3, 3^2, 11^2, 7^3, 22^2, 11^3, 101^2, 111^2, 11^4 = 121^2, 202^2, 212^2, 1001^2, 101^3, 1111^2, 111^3.
		

Crossrefs

Programs

  • Mathematica
    Block[{n = 10^6, nn, s}, s = Select[Range[2, n], PalindromeQ]; nn = Max[s]^2; {1}~Join~Union@ Reap[Table[Do[If[PalindromeQ[m^k], Sow[m^k]], {k, 2, Log[m, nn]}], {m, s}]][[-1, -1]]] (* Michael De Vlieger, Oct 18 2021 *)
  • PARI
    ispal(x) = my(d=digits(x)); d == Vecrev(d); \\ A002113
    isok(m) = if (m==1, return (1)); my(p); ispal(m) && ispower(m, , &p) && ispal(p); \\ Michel Marcus, Oct 19 2021
    
  • PARI
    ispal(x) = my(d=digits(x)); d == Vecrev(d); \\ A002113
    lista(nn) = {my(list = List(1)); for (k=2, sqrtint(nn), if (ispal(k), my(q = k^2); until (q > nn, if (ispal(q), listput(list, q)); q *= k;););); vecsort(list,,8);} \\ Michel Marcus, Oct 20 2021
  • Python
    # see link for faster version
    def ispal(n): s = str(n); return s == s[::-1]
    def aupto(limit):
        aset, m, mm = {1}, 2, 4
        while mm <= limit:
            if ispal(m):
                mk = mm
                while mk <= limit:
                    if ispal(mk): aset.add(mk)
                    mk *= m
            mm += 2*m + 1
            m += 1
        return sorted(aset)
    print(aupto(10**11)) # Michael S. Branicky, Oct 18 2021
    

A236181 Let x(1)x(2)... x(q) denote the decimal expansion of a number n with q odd. The sequence lists the squares n such that the central digit equals the sum of the other digits.

Original entry on oeis.org

121, 484, 10201, 10816, 40804, 72900, 1002001, 1008016, 3059001, 4008004, 100020001, 100080016, 151290000, 210250000, 216090000, 234090000, 313290000, 400080004, 10000200001, 10000800016, 10210900401, 11003800201, 11020800400, 14101800001, 30101903001, 30310810000
Offset: 1

Views

Author

Michel Lagneau, Jan 19 2014

Keywords

Comments

The numbers that are both perfect squares and palindromes (A033934) are in the sequence. The numbers 104^2, 1004^2, 10004^2,... are in the sequence.

Examples

			10201 = 101^2 is in the sequence because the central digit 2 equals the sum of the other digits 1+0+0+1.
		

Crossrefs

Programs

  • Maple
    with(numtheory):for n from 2 to 6 do:m:=2*n-2:m1:=floor(sqrt(10^m)):m2:=floor(sqrt(10^(m+1)-1)):for k1 from m1 to m2 do:k:=k1^2:x:=convert(k,base,10):n1:=nops(x):s:=sum('x[j]', 'j'=1..n1):s1:=s-x[n]:if x[n]=s1 then printf(`%d, `,k):else fi:od:od:
  • Mathematica
    cdodQ[n_]:=Module[{id=IntegerDigits[n],len,cd},len=Length[id];cd=If[OddQ[len],id[[(len+1)/2]],9999]; Total[id]-cd==cd]; Select[Range[175000]^2,cdodQ] (* Harvey P. Dale, Aug 04 2024 *)
Previous Showing 11-13 of 13 results.