cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-34 of 34 results.

A319110 Expansion of Product_{k>=1} 1/(1 - (k - 1)*x^k).

Original entry on oeis.org

1, 0, 1, 2, 4, 6, 13, 18, 37, 56, 101, 152, 285, 410, 713, 1118, 1830, 2780, 4618, 6934, 11278, 17092, 26894, 40822, 64435, 96372, 149299, 225104, 345131, 515394, 788176, 1169962, 1772957, 2632458, 3950365, 5849260, 8748993, 12867848, 19135894, 28126614, 41598695
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 10 2018

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0 or i=1,
           0^n, b(n, i-1)+(i-1)*b(n-i, min(n-i, i)))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..42);  # Alois P. Heinz, Aug 19 2019
  • Mathematica
    nmax = 40; CoefficientList[Series[Product[1/(1 - (k - 1) x^k), {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 40; CoefficientList[Series[Exp[Sum[Sum[(j - 1)^k x^(j k)/k, {j, 1, nmax}], {k, 1, nmax}]], {x, 0, nmax}], x]
    a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d (d - 1)^(k/d), {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 40}]

Formula

G.f.: exp(Sum_{k>=1} Sum_{j>=1} (j - 1)^k*x^(j*k)/k).
From Vaclav Kotesovec, Sep 11 2018: (Start)
a(n) ~ c * 2^(2*n/5), where
c = 28108804.248904780960402246466460350520790117596512766842168... if mod(n,5) = 0
c = 28108804.010850549080284030388905319123062152339902207992657... if mod(n,5) = 1
c = 28108804.067769166625741650205643600577757560110636366636106... if mod(n,5) = 2
c = 28108804.083581827971851596540314974909801290757084687583764... if mod(n,5) = 3
c = 28108804.058853893104368046896759214442695016905368229405793... if mod(n,5) = 4
(End)

A339426 Number of compositions (ordered partitions) of n into an even number of powers of 2.

Original entry on oeis.org

1, 0, 1, 2, 2, 6, 9, 14, 30, 48, 86, 156, 268, 478, 849, 1486, 2638, 4660, 8214, 14532, 25664, 45304, 80078, 141412, 249768, 441276, 779376, 1376696, 2431924, 4295534, 7587753, 13403102, 23674870, 41819588, 73870046, 130483396, 230486384, 407130332, 719153726
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 03 2020

Keywords

Examples

			a(5) = 6 because we have [4, 1], [1, 4], [2, 1, 1, 1], [1, 2, 1, 1], [1, 1, 2, 1] and [1, 1, 1, 2].
		

Crossrefs

Programs

  • Maple
    b:= proc(n, t) option remember; `if`(n=0, t,
          add(b(n-2^i, 1-t), i=0..ilog2(n)))
        end:
    a:= n-> b(n, 1):
    seq(a(n), n=0..42);  # Alois P. Heinz, Dec 03 2020
  • Mathematica
    nmax = 38; CoefficientList[Series[(1/2) (1/(1 - Sum[x^(2^k), {k, 0, Floor[Log[2, nmax]] + 1}]) + 1/(1 + Sum[x^(2^k), {k, 0, Floor[Log[2, nmax]] + 1}])), {x, 0, nmax}], x]

Formula

G.f.: (1/2) * (1 / (1 - Sum_{k>=0} x^(2^k)) + 1 / (1 + Sum_{k>=0} x^(2^k))).
a(n) = (A023359(n) + A339422(n)) / 2.
a(n) = Sum_{k=0..n} A023359(k) * A339422(n-k).

A271176 Expansion of -(4*x^3-7*x^2+4*x-1)/(2*x^4-5*x^3+8*x^2-5*x+1).

Original entry on oeis.org

1, 1, 4, 13, 36, 94, 239, 597, 1471, 3586, 8669, 20818, 49726, 118259, 280239, 662117, 1560516, 3670321, 8617584, 20203698, 47308391, 110659649, 258614439, 603929562, 1409413761, 3287385206, 7664034874, 17860302403
Offset: 0

Views

Author

Vladimir Kruchinin, Apr 01 2016

Keywords

Crossrefs

Cf. A034008.

Programs

  • Mathematica
    Table[(n + 1) Sum[Sum[(Binomial[i + k, i] 2^i Binomial[2 k + 2, n - i - k] (-1)^(n - i - k))/(k + 1), {i, 0, n - k}], {k, 0, n}], {n, 0, 27}] (* or *)
    CoefficientList[Series[-(4 x^3 - 7 x^2 + 4 x - 1)/(2 x^4 - 5 x^3 + 8 x^2 - 5 x + 1), {x, 0, 27}], x] (* Michael De Vlieger, Apr 01 2016 *)
    LinearRecurrence[{5,-8,5,-2},{1,1,4,13},30] (* Harvey P. Dale, Jan 19 2021 *)
  • Maxima
    a(n):=(n+1)*sum(sum(binomial(i+k,i)*2^i*binomial(2*k+2,n-i-k)*(-1)^(n-i-k),i,0,n-k)/(k+1),k,0,n);
    
  • PARI
    x='x+O('x^99); Vec(-(4*x^3-7*x^2+4*x-1)/(2*x^4-5*x^3+8*x^2-5*x+1)) \\ Altug Alkan, Apr 01 2016

Formula

a(n) = (n+1)*Sum_{k=0..n} (Sum_{i=0..n-k} (binomial(i+k,i)*2^i*binomial(2*k+2,n-i-k)*(-1)^(n-i-k))/(k+1)).
a(n) = 5*a(n-1)-8*a(n-2)+5*a(n-3)-2*a(n-4) for n>3, a(0)=1, a(1)=1, a(2)=4, a(3)=13.

A271180 Expansion of (4*x^3-7*x^2+4*x-1)/(x^6-4*x^5+4*x^4+x^3-7*x^2+5*x-1).

Original entry on oeis.org

1, 1, 5, 15, 45, 125, 342, 921, 2461, 6535, 17282, 45567, 119898, 315020, 826830, 2168583, 5684731, 14896459, 39024899, 102216045, 267693813, 700997144, 1835543565, 4806092673, 12583591525, 32946281848, 86258240735, 225834015840
Offset: 0

Views

Author

Vladimir Kruchinin, Apr 01 2016

Keywords

Crossrefs

Programs

  • Mathematica
    Table[(n + 1) Sum[Sum[(Binomial[i + k, i] 2^i Binomial[2 k + 2, n - i - k] (-1)^(n - i - k))/(k + 1) Fibonacci[k + 1], {i, 0, n - k}], {k, 0, n}], {n, 0, 27}] (* or *)
    CoefficientList[Series[(4 x^3 - 7 x^2 + 4 x - 1)/(x^6 - 4 x^5 + 4 x^4 + x^3 - 7 x^2 + 5 x - 1), {x, 0, 27}], x] (* Michael De Vlieger, Apr 01 2016 *)
  • Maxima
    a(n):=(n+1)*sum(sum(binomial(i+k,i)*2^i*binomial(2*k+2,n-i-k)*(-1)^(n-i-k),i,0,n-k)/(k+1)*fib(k+1),k,0,n);
    
  • PARI
    x='x+O('x^99); Vec((4*x^3-7*x^2+4*x-1)/(x^6-4*x^5+4*x^4+x^3-7*x^2+5*x-1)) \\ Altug Alkan, Apr 01 2016

Formula

a(n) = (n+1)*Sum_{k=0..n} (Sum_{i=0..n-k} (binomial(i+k,i)*2^i*binomial(2*k+2,n-i-k)*(-1)^(n-i-k))/(k+1)*F(k+1)), where F = A000045 (Fibonacci numbers).
a(n) = 5*a(n-1) - 7*a(n-2) + a(n-3) + 4*a(n-4) - 4*a(n-5) + a(n-6) for n>3, a(0)=1, a(1)=1, a(2)=5, a(3)=15.
Previous Showing 31-34 of 34 results.