cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-16 of 16 results.

A263475 Total number of positive integers < 10^n with multiplicative digital root value 8.

Original entry on oeis.org

1, 23, 161, 1050, 5971, 32658, 187197, 1057467, 5495088, 25862850, 112452321, 501114082, 2867532188, 21469965415, 164448147485, 1116524049413, 6550885669936, 33615367021792, 154093286995596, 651413912544125, 2703190211181211, 12293485890559055
Offset: 1

Views

Author

Martin Renner, Oct 19 2015

Keywords

Comments

Partial sums of A263481.

Crossrefs

Programs

  • Mathematica
    lim = 6; t = Select[Range[1, 10^lim - 1], FixedPoint[Times @@ IntegerDigits@ # &, #] == 8 &]; Count[t, n_ /; n <= 10^#] & /@ Range@ lim (* Michael De Vlieger, Oct 21 2015 *)
  • PARI
    t(k) = {while(k>9, k=prod(i=1, #k=digits(k), k[i])); k}
    a(n) = sum(i=1, 10^n - 1, if(t(i) == 8, 1, 0)); \\ Altug Alkan, Oct 19 2015

Formula

A263470(n) + A000027(n) + A263471(n) + A000217(n) + A263472(n) + A263473(n) + A263474(n) + A000217(n) + a(n) + A000292(n) = A002283(n).

Extensions

a(9)-a(22) from Hiroaki Yamanouchi, Oct 25 2015

A263481 Total number of n-digit positive integers with multiplicative digital root value 8.

Original entry on oeis.org

1, 22, 138, 889, 4921, 26687, 154539, 870270, 4437621, 20367762, 86589471, 388661761, 2366418106, 18602433227, 142978182070, 952075901928, 5434361620523, 27064481351856, 120477919973804, 497320625548529, 2051776298637086, 9590295679377844, 54933121828772931
Offset: 1

Views

Author

Martin Renner, Oct 19 2015

Keywords

Comments

First differences of A263475.

Crossrefs

Programs

  • Mathematica
    Last /@ Tally@ IntegerLength@ Select[Range@ 1000000, FixedPoint[Times @@ IntegerDigits@ # &, #] == 8 &] (* Michael De Vlieger, Oct 21 2015 *)
  • PARI
    t(k) = {while(k>9, k=prod(i=1, #k=digits(k), k[i])); k}
    a(n) = sum(i=10^(n-1), 10^n - 1, if(t(i) == 8, 1, 0)); \\ Altug Alkan, Oct 19 2015

Formula

A263476(n) + A000012(n) + A263477(n) + A000027(n) + A263478(n) + A263479(n) + A263480(n) + A000027(n) + a(n) + A000217(n) = A052268(n).

Extensions

a(9)-a(23) from Hiroaki Yamanouchi, Oct 25 2015

A277061 Numbers with multiplicative digital root > 0.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 17, 18, 19, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 51, 53, 57, 61, 62, 63, 64, 66, 67, 68, 71, 72, 73, 74, 75, 76, 77, 79, 81, 82, 83, 84, 86, 88, 89, 91, 92, 93, 94, 97, 98, 99, 111, 112, 113, 114, 115
Offset: 1

Views

Author

J. Lowell, Sep 26 2016

Keywords

Comments

Question: when will numbers not in this sequence outnumber numbers in this sequence? Up to n = 1249, there are 524 terms, so 525 terms not in this sequence. Up to n = 1522, there are n/2 terms. No n > 1522 has that property. Up to 10^10, only about 1.46% of numbers are a term.
To find how many terms there are up to 10^n, see if A009994(i) is for 2 <= i <= binomial(n + 9, 9). If it is then that adds A047726(A009994(i)) to the total (we don't have to worry about digits 0 in A009994(i) as there aren't any for the specified i). One may put further constraints on i. For example, A009994(i) can't contain an even digit and a 5 in the same number. - David A. Corneth, Sep 27 2016

Examples

			25 is not in this sequence because 2*5 = 10 and 1*0 = 0.
		

Crossrefs

Cf. A031347, A034048 (complement).
Cf. A028843 (a subsequence).
Union of A002275, A034049, A034050, A034051, A034052, A034053, A034054, A034055, A034056 (numbers having multiplicative digital roots 1-9).
Cf. A052382 (a supersequence).

Programs

  • Mathematica
    Select[Range@ 112, FixedPoint[Times @@ IntegerDigits@ # &, #] > 0 &] (* Michael De Vlieger, Sep 26 2016 *)
  • PARI
    is(n) = n=digits(n); while(#n>1,n=digits(prod(i=1,#n,n[i]))); #n>0 \\ David A. Corneth, Sep 27 2016

Extensions

More terms from Michael De Vlieger, Sep 26 2016

A199989 Numbers with digital product = 8.

Original entry on oeis.org

8, 18, 24, 42, 81, 118, 124, 142, 181, 214, 222, 241, 412, 421, 811, 1118, 1124, 1142, 1181, 1214, 1222, 1241, 1412, 1421, 1811, 2114, 2122, 2141, 2212, 2221, 2411, 4112, 4121, 4211, 8111, 11118, 11124, 11142, 11181, 11214, 11222, 11241, 11412, 11421, 11811
Offset: 1

Views

Author

Jaroslav Krizek, Nov 13 2011

Keywords

Crossrefs

Subsequence of A034055.
Cf. A007954.

Programs

  • Maple
    f:= proc(d) local b,i,t;
       b:= (10^d-1)/9;
       op(sort([seq(b+7*10^i,i=0..d-1),seq(b+10^t[1]+3*10^t[2],t = combinat:-permute([$0..d-1],2)),seq(b+10^t[1]+10^t[2]+10^t[3],t=combinat:-choose([$0..d-1],3))]))
    end proc:
    seq(f(d),d=1..5); # Robert Israel, Jan 13 2021
  • Mathematica
    Select[Range[20000], Times @@ IntegerDigits[#] == 8 &] (* T. D. Noe, Nov 16 2011 *)

A201023 Composite numbers whose multiplicative digital root is 8.

Original entry on oeis.org

8, 18, 24, 36, 38, 42, 46, 49, 63, 64, 66, 76, 77, 81, 88, 92, 94, 99, 118, 124, 129, 136, 138, 142, 146, 164, 166, 176, 177, 183, 188, 192, 194, 214, 219, 222, 226, 234, 236, 237, 243, 248, 262, 273, 284, 291, 292, 316, 318, 323, 324, 326, 327, 332, 334, 339
Offset: 1

Views

Author

Jaroslav Krizek, Nov 25 2011

Keywords

Comments

Complement of A201022 with respect to A034055.

Crossrefs

Cf. A201022 (primes whose multiplicative digital root is 8), A034055 (numbers whose multiplicative digital root is 8).

Formula

Composite number 124 is in the sequence because 1*2*4=8.

A201022 Primes whose multiplicative digital root is 8.

Original entry on oeis.org

29, 67, 79, 83, 97, 149, 163, 167, 179, 181, 197, 199, 229, 233, 241, 263, 337, 373, 419, 421, 433, 461, 491, 499, 613, 617, 631, 641, 661, 719, 733, 761, 811, 881, 883, 919, 941, 971, 991, 1129, 1163, 1181, 1229, 1237, 1291, 1327, 1361, 1373, 1381, 1399, 1423
Offset: 1

Views

Author

Jaroslav Krizek, Nov 25 2011

Keywords

Comments

Complement of A201023 with respect to A034055.

Examples

			Prime 149 is in the sequence because 1*4*9=36, 3*6=18, 1*8=8.
		

Crossrefs

Cf. A201023 (composite numbers whose multiplicative digital root is 8), A034055 (numbers whose multiplicative digital root is 8).
Previous Showing 11-16 of 16 results.