cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A051688 a(n) = (5*n+7)(!^5)/7(!^5), related to A034323 ((5*n+2)(!^5) quintic, or 5-factorials).

Original entry on oeis.org

1, 12, 204, 4488, 121176, 3877632, 143472384, 6025840128, 283214486016, 14727153272832, 839447736551424, 52045759666188288, 3487065897634615296, 251068744629692301312, 19332293336486307201024
Offset: 0

Views

Author

Keywords

Comments

Row m=7 of the array A(6; m,n) := ((5*n+m)(!^5))/m(!^5), m >= 0, n >= 0.

Crossrefs

Cf. A052562, A008548(n+1), A034323(n+1), A034300(n+1), A034301(n+1), A034325(n+1), A051687-A051691 (rows m=0..10).

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(1/(1-5*x)^(12/5))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Aug 15 2018
  • Mathematica
    s=1;lst={s};Do[s+=n*s;AppendTo[lst, s], {n, 11, 5!, 5}];lst (* Vladimir Joseph Stephan Orlovsky, Nov 08 2008 *)
    With[{nn = 30}, CoefficientList[Series[1/(1 - 5*x)^(12/5), {x, 0, nn}], x]*Range[0, nn]!] (* G. C. Greubel, Aug 15 2018 *)
  • PARI
    x='x+O('x^30); Vec(serlaplace(1/(1-5*x)^(12/5))) \\ G. C. Greubel, Aug 15 2018
    

Formula

a(n) = ((5*n+7)(!^5))/7(!^5) = A034323(n+2)/7.
E.g.f.: 1/(1-5*x)^(12/5).

A303488 a(n) = n! * [x^n] 1/(1 - 5*x)^(n/5).

Original entry on oeis.org

1, 1, 14, 312, 9576, 375000, 17873856, 1004306688, 65006637696, 4763494479744, 389812500000000, 35237024762075136, 3487065897634615296, 374960171943074285568, 43532820293400237735936, 5427359437500000000000000, 723181462895975365595529216, 102563963819340862347122245632
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 24 2018

Keywords

Examples

			a(1) = 1;
a(2) = 2*7 = 14;
a(3) = 3*8*13 = 312;
a(4) = 4*9*14*19 = 9576;
a(5) = 5*10*15*20*25 = 375000, etc.
		

Crossrefs

Programs

  • Mathematica
    Table[n! SeriesCoefficient[1/(1 - 5 x)^(n/5), {x, 0, n}], {n, 0, 17}]
    Table[Product[5 k + n, {k, 0, n - 1}], {n, 0, 17}]
    Table[5^n Pochhammer[n/5, n], {n, 0, 17}]

Formula

a(n) = Product_{k=0..n-1} (5*k + n).
a(n) = 5^n*Gamma(6*n/5)/Gamma(n/5).
a(n) ~ 6^(6*n/5-1/2)*n^n/exp(n).

A051689 a(n) = (5*n+8)(!^5)/8(!^5), related to A034300 ((5*n+3)(!^5) quintic, or 5-factorials).

Original entry on oeis.org

1, 13, 234, 5382, 150696, 4972968, 188972784, 8125829712, 390039826176, 20672110787328, 1198982425665024, 75535892816896512, 5136440711548962816, 374960171943074285568, 29246893411559794274304
Offset: 0

Views

Author

Keywords

Comments

Row m=8 of the array A(6; m,n) := ((5*n+m)(!^5))/m(!^5), m >= 0, n >= 0.

Crossrefs

Cf. A052562, A008548(n+1), A034323(n+1), A034300(n+1), A034301(n+1), A034325(n+1), A051687-A051691 (rows m=0..10).

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(1/(1-5*x)^(13/5))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Aug 15 2018
  • Mathematica
    s=1;lst={s};Do[s+=n*s;AppendTo[lst, s], {n, 12, 5!, 5}];lst (* Vladimir Joseph Stephan Orlovsky, Nov 08 2008 *)
    With[{nn = 30}, CoefficientList[Series[1/(1 - 5*x)^(13/5), {x, 0, nn}], x]*Range[0, nn]!] (* G. C. Greubel, Aug 15 2018 *)
  • PARI
    x='x+O('x^30); Vec(serlaplace(1/(1-5*x)^(13/5))) \\ G. C. Greubel, Aug 15 2018
    

Formula

a(n) = ((5*n+8)(!^5))/8(!^5) = A034300(n+2)/8.
E.g.f.: 1/(1-5*x)^(13/5).

A081408 a(n) = (n+1)*a(n-5), with a(0)=a(1)=a(2)=a(3)=a(4)=1.

Original entry on oeis.org

1, 1, 1, 1, 1, 6, 7, 8, 9, 10, 66, 84, 104, 126, 150, 1056, 1428, 1872, 2394, 3000, 22176, 31416, 43056, 57456, 75000, 576576, 848232, 1205568, 1666224, 2250000, 17873856, 27143424, 39783744, 56651616, 78750000, 643458816, 1004306688, 1511782272
Offset: 0

Views

Author

Labos Elemer, Apr 01 2003

Keywords

Comments

Quintic factorial sequences are generated by single 5-order recursion and appear in unified form.

Examples

			A008548, A034323, A034300, A034301, A034325 sequences are combed together as A081408(5n+r) with r=0,1,2,3,4.
		

Crossrefs

Cf. A001147, A002866, A034001, A007599, A034000, A007696, A000407, A034176, A034177, A008548, A034323, A034300, A034301, A034325 [double, triple, quartic, quintic, factorial subsequences], generated together in A081405-A081408.

Programs

  • GAP
    a:=[1,1,1,1,1];; for n in [6..40] do a[n]:=n*a[n-5]; od; a; # G. C. Greubel, Aug 15 2019
  • Haskell
    a081407 n = a081408_list !! n
    a081407_list = 1 : 1 : 1 : 1 : zipWith (*) [5..] a081407_list
    -- Reinhard Zumkeller, Jan 05 2012
    
  • Magma
    [n le 5 select 1 else n*Self(n-5): n in [1..40]]; // G. C. Greubel, Aug 15 2019
    
  • Mathematica
    a[0]=a[1]=a[2]=a[3]=a[4]=1; a[x_]:= (x+1)*a[x-5]; Table[a[n], {n, 40}]
  • PARI
    m=30; v=concat([1,1,1,1,1], vector(m-5)); for(n=6, m, v[n]=n*v[n-5] ); v \\ G. C. Greubel, Aug 15 2019
    
  • Sage
    def a(n):
        if (n<5): return 1
        else: return (n+1)*a(n-5)
    [a(n) for n in (0..40)] # G. C. Greubel, Aug 15 2019
    
Previous Showing 11-14 of 14 results.