cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-24 of 24 results.

A270438 a(n) is the number of entries == 1 mod 4 in row n of Pascal's triangle.

Original entry on oeis.org

1, 2, 2, 2, 2, 4, 2, 4, 2, 4, 4, 4, 2, 4, 4, 8, 2, 4, 4, 4, 4, 8, 4, 8, 2, 4, 4, 8, 4, 8, 8, 16, 2, 4, 4, 4, 4, 8, 4, 8, 4, 8, 8, 8, 4, 8, 8, 16, 2, 4, 4, 8, 4, 8, 8, 16, 4, 8, 8, 16, 8, 16, 16, 32, 2, 4, 4, 4, 4, 8, 4, 8, 4, 8, 8, 8, 4, 8, 8, 16, 4, 8, 8
Offset: 0

Views

Author

Robert Israel, Jul 12 2016

Keywords

Comments

All entries are powers of 2.

Examples

			Row 3 of Pascal's triangle is (1,3,3,1) and has two entries == 1 (mod 4), so a(3) = 2.
		

Crossrefs

Programs

  • Maple
    f:= proc(n) local L,m;
      L:= convert(n,base,2);
      m:= convert(L,`+`);
      if has(L[1..-2]+L[2..-1],2) then 2^(m-1) else 2^m fi
    end proc:
    map(f, [$0..1000]);
  • Mathematica
    Count[#, 1] & /@ Table[Mod[Binomial[n, k], 4], {n, 0, 120}, {k, 0, n}] (* Michael De Vlieger, Feb 26 2017 *)
  • PARI
    a(n) = 2^(hammingweight(n) - min(hammingweight(bitand(n, n>>1)),1)) \\ Charles R Greathouse IV, Jul 13 2016
    
  • Python
    def A270438(n): return 1<>1)).bit_count() # Chai Wah Wu, Apr 24 2025

Formula

a(n) = 2^(A000120(n) - min(1, A014081(n))). [Davis & Webb]

A213126 Rows of triangle formed using Pascal's rule, except sums in the n-th row are modulo n: T(n,0) = T(n,n) = 1 and T(n,k) = (T(n-1,k-1) + T(n-1,k)) mod n.

Original entry on oeis.org

1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 2, 2, 2, 1, 1, 3, 4, 4, 3, 1, 1, 4, 1, 2, 1, 4, 1, 1, 5, 5, 3, 3, 5, 5, 1, 1, 6, 2, 0, 6, 0, 2, 6, 1, 1, 7, 8, 2, 6, 6, 2, 8, 7, 1, 1, 8, 5, 0, 8, 2, 8, 0, 5, 8, 1, 1, 9, 2, 5, 8, 10, 10, 8, 5, 2, 9, 1, 1, 10, 11, 7, 1, 6, 8, 6
Offset: 0

Views

Author

Alex Ratushnyak, Jun 06 2012

Keywords

Examples

			Triangle begins:
  1;
  1,  1;
  1,  0,  1;
  1,  1,  1,  1;
  1,  2,  2,  2,  1;
  1,  3,  4,  4,  3,  1;
  1,  4,  1,  2,  1,  4,  1;
  1,  5,  5,  3,  3,  5,  5,  1;
  1,  6,  2,  0,  6,  0,  2,  6,  1;
  1,  7,  8,  2,  6,  6,  2,  8,  7,  1;
  1,  8,  5,  0,  8,  2,  8,  0,  5,  8,  1;
  1,  9,  2,  5,  8, 10, 10,  8,  5,  2,  9,  1;
		

Crossrefs

Cf. A007318 - Pascal's triangle read by rows.

Programs

  • Mathematica
    T[n_,k_]:=If[k==0 || k==n, 1, Mod[T[n - 1, k - 1] + T[n- 1, k], n]]; Table[T[n, k], {n, 0, 15}, {k, 0, n}] // Flatten (* Indranil Ghosh, Apr 29 2017 *)
  • Python
    src = [0]*1024
    dst = [0]*1024
    for n in range(19):
        dst[0] = dst[n] = 1
        for k in range(1, n):
            dst[k] = (src[k-1]+src[k]) % n
        for k in range(n+1):
            src[k] = dst[k]
            print(dst[k], end=',')

Extensions

Offset corrected by Joerg Arndt, Dec 05 2016

A386441 Triangle, read by rows, formed by reading Pascal's triangle (A007318) mod 27.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 6, 4, 1, 1, 5, 10, 10, 5, 1, 1, 6, 15, 20, 15, 6, 1, 1, 7, 21, 8, 8, 21, 7, 1, 1, 8, 1, 2, 16, 2, 1, 8, 1, 1, 9, 9, 3, 18, 18, 3, 9, 9, 1, 1, 10, 18, 12, 21, 9, 21, 12, 18, 10, 1, 1, 11, 1, 3, 6, 3, 3, 6, 3, 1, 11, 1, 1, 12, 12, 4, 9, 9, 6, 9, 9, 4, 12, 12, 1, 1, 13, 24, 16, 13, 18, 15, 15, 18, 13, 16, 24, 13, 1
Offset: 0

Views

Author

Chai Wah Wu, Jul 21 2025

Keywords

Examples

			Triangle begins:
               1;
             1,  1;
           1,  2,  1;
         1,  3,  3,  1;
       1,  4,  6,  4,  1;
     1,  5,  10,  10,  5,  1;
   1,  6,  15,  20,  15,  6,  1;
 1,  7,  21,  8,   8,  21,  7,  1;
  ...
		

Crossrefs

Sequences based on the triangles formed by reading Pascal's triangle mod m: A047999 (m = 2), A083093 (m = 3), A034931 (m = 4), A095140 (m = 5), A095141 (m = 6), A095142 (m = 7), A034930 (m = 8), A095143 (m = 9), A008975 (m = 10), A095144 (m = 11), A095145 (m = 12), A275198 (m = 14), A034932 (m = 16).

Programs

  • Mathematica
    T[i_,j_]:=Mod[Binomial[i,j],27]; Table[T[n,k],{n,0,13},{k,0,n}]//Flatten (* Stefano Spezia, Jul 22 2025 *)
  • Python
    from math import isqrt, comb
    from sympy import multiplicity
    from gmpy2 import digits
    def A386441(n):
        def g1(s,w,e):
            c, d = 1, 0
            if len(s) == 0: return c, d
            a, b = int(s,3), int(w,3)
            if a>=b:
                k = comb(a,b)%27
                j = multiplicity(3,k)
                d += j*e
                k = k//3**j
                c = c*pow(k,e,27)%27
            else:
                if int(s[0:1],3)4: return 0
        s = s.zfill(3)
        w = w.zfill(l:=len(s))
        c, d = g1(s[:3],w[:3],1)
        for i in range(1,l-2):
            c0, d0 = g1(s[i:i+3],w[i:i+3],1)
            c1, d1 = g1(s[i:i+2],w[i:i+2],-1)
            c = c*c0*c1%27
            d += d0+d1
        return c*3**d%27

Formula

T(i, j) = binomial(i, j) mod 27.

A178206 Decimal representation of asymptotic growth constant for the number of acyclic orientations on the two-dimensional Sierpinski gasket SG2(n) in the large n limit.

Original entry on oeis.org

1, 1, 2, 7, 2, 9, 9, 0, 7, 0, 5, 3, 6, 6, 1, 6
Offset: 1

Views

Author

Jonathan Vos Post, May 22 2010

Keywords

Comments

Proposition III.1, p.10 of Chang. The paper also studies the number of acyclic orientations on the generalized two-dimensional Sierpinski gasket $SG_{2,b}(n)$ at stage $n$ with $b$ equal to two and three, and determines the asymptotic behaviors. It also derives upper bounds for the asymptotic growth constants for $SG_{2,b}$ and $d$-dimensional Sierpinski gasket $SG_d$.

Examples

			1.127299070536616....
		

Crossrefs

Previous Showing 21-24 of 24 results.