cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 22 results. Next

A218715 a(n) is smallest number such that a(n)^2 + 1 is divisible by 53^n.

Original entry on oeis.org

0, 23, 500, 27590, 623098, 23048345, 5041394261, 416081467190, 11331029931180, 50928660480181, 6548598523124085, 2441875986594058601, 76594163421571591377, 7783548304686046882879, 252583670951378815076851, 4392422457122810120236558, 1165802007767335105471573954
Offset: 0

Views

Author

Michel Lagneau, Nov 04 2012

Keywords

Examples

			a(3) = 27590 because 27590^2+1 =  53 ^ 3 * 5113.
		

Crossrefs

Programs

  • Mathematica
    b=23;n53=53;jo=Join[{0,b},Table[n53=53*n53;b=PowerMod[b,53,n53];b=Min[b,n53-b],{99}]]

A218563 Numbers n such that n^2 + 1 is divisible by a 4th power.

Original entry on oeis.org

182, 239, 443, 807, 1068, 1432, 1693, 2057, 2318, 2682, 2943, 3307, 3568, 3932, 4193, 4557, 4818, 5182, 5443, 5807, 6068, 6432, 6693, 7057, 7318, 7682, 7943, 8307, 8568, 8932, 9193, 9557, 9818, 10182, 10443, 10807, 11068, 11432, 11693, 12057, 12318, 12682
Offset: 1

Views

Author

Michel Lagneau, Nov 02 2012

Keywords

Comments

Includes all n == 182 or 443 (mod 625). In particular, the sequence has positive asymptotic density. # Robert Israel, Oct 06 2016

Examples

			239 is in the sequence because 239^2+1 = 57122 = 2*13^4;
27493 is in the sequence because 27493^2+1 = 755865050 = 2*5^2*17^4*181.
		

Crossrefs

Programs

  • Maple
    N:= 100000: # to get all terms <= N
    res:= {}:
    p:= 2;
    while p^4 <= N^2+1 do
      for v in map(t -> subs(t,n), [msolve(n^2+1, p^4)]) do
        res:= res union {seq(k*p^4+v, k = 0 .. (N-v)/p^4)}
      od;
      p:= nextprime(p);
    od:
    sort(convert(res,list)); # Robert Israel, Oct 06 2016
  • Mathematica
    Select[Range[2,13000],Max[Transpose[FactorInteger[#^2+1]][[2]]]>3&]

A218716 a(n) is smallest number such that a(n)^2 + 1 is divisible by 61^n.

Original entry on oeis.org

0, 11, 682, 51412, 6304056, 144762466, 9435321777, 988322434636, 71294762793847, 3138611770750343, 283798117998769727, 15409745938584647495, 320007169218635518122, 45443939732277600209579, 207359227164430355867160, 59053635973003478214807486
Offset: 0

Views

Author

Michel Lagneau, Nov 04 2012

Keywords

Examples

			a(3) = 51412 because 51412^2+1 = 5 * 17 * 61 ^ 3 * 137.
		

Crossrefs

Programs

  • Mathematica
    b=11;n61=61;jo=Join[{0,b},Table[n61=61*n61;b=PowerMod[b,61,n61];b=Min[b,n61-b],{99}]]

A218564 Numbers n such that n^2 + 1 is divisible by a 5th power.

Original entry on oeis.org

1068, 2057, 4193, 5182, 7318, 8307, 10443, 11432, 13568, 14557, 16693, 17682, 19818, 20807, 22943, 23932, 26068, 27057, 29193, 30182, 32318, 33307, 35443, 36432, 38568, 39557, 41693, 42682, 44818, 45807, 47943, 48932, 51068, 52057, 54193, 55182, 57318, 58307
Offset: 1

Views

Author

Michel Lagneau, Nov 02 2012

Keywords

Comments

For each prime p == 1 (mod 4), there are two values of x (mod p^5) that solve x^2 + 1 == 0 (mod p^5), and then x + k*p^5 is in the sequence for every k. Thus the asymptotic density of this sequence should be 1 - Product_p (1 - 2/p^5), where the product is over all primes p == 1 (mod 4). - Robert Israel, Sep 04 2018

Examples

			1068 is in the sequence because 1068^2+1 = 1140625 = 5^6*73;
143044 is in the sequence because 143044^2+1 = 20461585937 = 13^5*55109;
390112 is in the sequence because 390112^2+1 = 152187372545 = 5*13*17^6*97.
		

Crossrefs

Programs

  • Maple
    N:= 10^5: # to get all terms <= N
    P:= select(isprime,[seq(i,i=5..floor((N^2+1)^(1/5)),4)]):
    g:= proc(x,r,N) local t; t:= rhs(op(x)); seq(t+r*k,k=0..(N-t)/r) end proc:
    R:= `union`(seq(map(g, {msolve(n^2+1,p^5)},p^5,N),p=P)):
    sort(convert(R,list)); # Robert Israel, Sep 04 2018
  • Mathematica
    Select[Range[2,20000],Max[Transpose[FactorInteger[#^2+1]][[2]]]>4&]
  • PARI
    isok(n) = vecmax(factor(n^2+1)[,2]) >= 5; \\ Michel Marcus, Sep 04 2018

A218717 a(n) is smallest number such that a(n)^2 + 1 is divisible by 73^n.

Original entry on oeis.org

0, 27, 776, 153765, 6459524, 404034898, 41865466758, 3219884218827, 239822883201307, 9110883894036198, 991706090146518323, 142813358470363920740, 8641533837443707913816, 586811715371303018585730, 2756887299416274753296336, 729513196939063257288876118
Offset: 0

Views

Author

Michel Lagneau, Nov 04 2012

Keywords

Examples

			a(3) = 153765 because 153765^2+1 = 2 * 73 ^ 3 * 30389.
		

Crossrefs

Programs

  • Mathematica
    b=27;n73=73;jo=Join[{0,b},Table[n73=73*n73;b=PowerMod[b,73,n73];b=Min[b,n73-b],{99}]]

A034944 Successive approximations to 13-adic integer sqrt(-1).

Original entry on oeis.org

0, 5, 70, 239, 143044, 1999509, 6826318, 822557039, 85658552023, 1188526486815, 11941488851037, 291518510320809, 2108769149874327, 13920898306972194, 2675587335039691558, 63228498770709057089
Offset: 0

Views

Author

Keywords

References

  • K. Mahler, Introduction to p-Adic Numbers and Their Functions, Cambridge, 1973, p. 35.

Crossrefs

Programs

  • PARI
    seq(n)={my(v=vector(n), i=1, k=0); while(i<#v, k++; my(t=truncate(sqrt(-1 + O(13^k)))); if(t > v[i], i++; v[i]=t)); v} \\ Andrew Howroyd, Nov 10 2018

A218565 Numbers k such that k^2 + 1 is divisible by a 6th power.

Original entry on oeis.org

1068, 14557, 16693, 30182, 32318, 45807, 47943, 61432, 63568, 77057, 79193, 92682, 94818, 108307, 110443, 123932, 126068, 139557, 141693, 155182, 157318, 170807, 172943, 186432, 188568, 202057, 204193, 217682, 219818, 233307, 235443, 248932, 251068, 264557
Offset: 1

Views

Author

Michel Lagneau, Nov 02 2012

Keywords

Examples

			1068 is in the sequence because 1068^2 + 1 = 5^6 * 73.
390112 is in the sequence because 390112^2 + 1 = 5 * 13 * 17 ^ 6 * 97.
1999509 is in the sequence because 1999509^2 + 1 = 2 * 13 ^ 6 * 29 * 14281.
		

Crossrefs

Cf. A001014 (6th powers).

Programs

  • Mathematica
    Select[Range[2,27000],Max[Transpose[FactorInteger[#^2+1]][[2]]]>5&]

A218718 a(n) is smallest number such that a(n)^2 + 1 is divisible by 89^n.

Original entry on oeis.org

0, 34, 3861, 344464, 20099637, 2153335831, 102666405913, 4867146503697, 923990886302412, 50251663587824641, 5655954122907587985, 909925832091926912414, 85120439454684773642745, 2631773999763198769695986, 41332517834853462204330752
Offset: 0

Views

Author

Michel Lagneau, Nov 04 2012

Keywords

Examples

			a(3) = 344464 because 344464^2+1 = 37 * 89 ^ 3 * 4549.
		

Crossrefs

Programs

  • Mathematica
    b=34;n89=89;jo=Join[{0,b},Table[n89=89*n89;b=PowerMod[b, 89,n89];b=Min[b,n89-b],{99}]]

A218574 Numbers k such that k^2 + 1 is divisible by a 7th power.

Original entry on oeis.org

32318, 45807, 110443, 123932, 188568, 202057, 266693, 280182, 344818, 358307, 422943, 436432, 501068, 514557, 579193, 592682, 657318, 670807, 735443, 748932, 813568, 827057, 891693, 905182, 969818, 983307
Offset: 1

Views

Author

Michel Lagneau, Nov 02 2012

Keywords

Examples

			32318 is in the sequence because 32318^2 + 1 =  5 ^ 7 * 29 * 461.
6826318 is in the sequence because 6826318^2 + 1 = 5 ^ 3 * 13 ^ 8 * 457.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[2,1500000],Max[Transpose[FactorInteger[#^2+1]][[2]]]>6&]

A218719 a(n) is smallest number such that a(n)^2 + 1 is divisible by 97^n.

Original entry on oeis.org

0, 22, 4052, 107551, 22709274, 331407850, 197177418061, 26457926739667, 2369608176604944, 76004727767164666, 25163629663367816827, 1965881512952938486496, 191165497320828772935835, 21700278688179406782082106, 560121950820639295011033922
Offset: 0

Views

Author

Michel Lagneau, Nov 04 2012

Keywords

Examples

			a(3) = 107551 because 107551^2+1 = 2 * 97 ^ 3 * 6337.
		

Crossrefs

Programs

  • Mathematica
    b=22;n97=97;jo=Join[{0,b},Table[n97=97*n97;b=PowerMod[b, 97,n97];b=Min[b,n97-b],{99}]]
Previous Showing 11-20 of 22 results. Next