cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-25 of 25 results.

A122855 Expansion of (phi(q^3)phi(q^5) + phi(q)phi(q^15))/2 in powers of q where phi(q) is a Ramanujan theta function.

Original entry on oeis.org

1, 1, 0, 1, 1, 1, 0, 0, 2, 1, 0, 0, 1, 0, 0, 1, 3, 2, 0, 2, 1, 0, 0, 2, 2, 1, 0, 1, 0, 0, 0, 2, 4, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 0, 1, 0, 2, 3, 1, 0, 2, 0, 2, 0, 0, 0, 2, 0, 0, 1, 2, 0, 0, 5, 0, 0, 0, 2, 2, 0, 0, 2, 0, 0, 1, 2, 0, 0, 2, 3, 1, 0, 2, 0, 2, 0, 0, 0, 0, 0, 0, 2, 2, 0, 2, 4, 0, 0, 0, 1, 0, 0, 0, 0
Offset: 0

Views

Author

Michael Somos, Sep 14 2006

Keywords

Comments

Ramanujan theta functions: f(q) := Product_{k>=1} (1-(-q)^k) (see A121373), phi(q) := theta_3(q) := Sum_{k=-oo..oo} q^(k^2) (A000122), psi(q) := Sum_{k>=0} q^(k*(k+1)/2) (A010054), chi(q) := Product_{k>=0} (1+q^(2k+1)) (A000700).

Examples

			1 + q + q^3 + q^4 + q^5 + 2*q^8 + q^9 + q^12 + q^15 + ...
		

Crossrefs

A035175(n) = a(4n).

Programs

  • Mathematica
    a[0] = 1; a[n_] := DivisorSum[n, KroneckerSymbol[-15, #]*(-1)^Boole[Mod[#, 4] == 2]&]; Table[a[n], {n, 0, 104}] (* Jean-François Alcover, Dec 07 2015, adapted from PARI *)
  • PARI
    {a(n)=if(n<1, n==0, sumdiv(n, d, kronecker(-15,d)*(-1)^(d%4==2)))}
    
  • PARI
    {a(n)= local(A, p, e); if(n<1, n==0, A=factor(n); prod(k=1, matsize(A)[1], if(p=A[k, 1], e=A[k, 2]; if(p==2, e-1, if(p<7, 1, if(p%15==2^valuation(p%15,2), e+1, 1-e%2))))))}
    
  • PARI
    {a(n)=local(A); if(n<0, 0, A=x*O(x^n); polcoeff( eta(x^2+A)^2*eta(x^6+A)*eta(x^10+A)*eta(x^30+A)^2/ (eta(x+A)*eta(x^4+A)*eta(x^15+A)*eta(x^60+A)), n))}

Formula

Expansion of (eta(q^2)^2*eta(q^6)eta(q^10)eta(q^30)^2)/ (eta(q)eta(q^4)eta(q^15)eta(q^60)) in powers of q.
a(n) is multiplicative with a(2^e) = |e-1|, a(3^e)=a(5^e)=1, a(p^e) = e+1 if p == 1, 2, 4, 8 (mod 15), a(p^e) = (1+(-1)^e)/2 if p == 7, 11, 13, 14 (mod 15).
Euler transform of period 60 sequence [ 1, -1, 1, 0, 1, -2, 1, 0, 1, -2, 1, -1, 1, -1, 2, 0, 1, -2, 1, -1, 1, -1, 1, -1, 1, -1, 1, 0, 1, -4, 1, 0, 1, -1, 1, -1, 1, -1, 1, -1, 1, -2, 1, 0, 2, -1, 1, -1, 1, -2, 1, 0, 1, -2, 1, 0, 1, -1, 1, -2, ...].
Moebius transform is period 60 sequence [ 1, -1, 0, 1, 0, 0, -1, 1, 0, 0, -1, 0, -1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, -1, -1, 0, 1, 1, 0, -1, 0, 0, -1, -1, 0, 0, -1, 0, -1, -1, 0, -1, 1, 0, 1, 0, 0, -1, 1, 0, 0, -1, 0, 1, -1, 0, ...].
a(15n+7) = a(15n+11) = a(15n+13) = a(15n+14) = 0.
a(3n) = a(5n) = a(n).
G.f.: 1 + Sum_{k>0} Kronecker(-15,k) x^k/(1-(-x)^k).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Pi/sqrt(15) = 0.811155... . - Amiram Eldar, Nov 24 2023

A316569 a(n) = Jacobi (or Kronecker) symbol (n, 15).

Original entry on oeis.org

0, 1, 1, 0, 1, 0, 0, -1, 1, 0, 0, -1, 0, -1, -1, 0, 1, 1, 0, 1, 0, 0, -1, 1, 0, 0, -1, 0, -1, -1, 0, 1, 1, 0, 1, 0, 0, -1, 1, 0, 0, -1, 0, -1, -1, 0, 1, 1, 0, 1, 0, 0, -1, 1, 0, 0, -1, 0, -1, -1, 0, 1, 1, 0, 1, 0, 0, -1, 1, 0, 0, -1, 0, -1, -1, 0
Offset: 0

Views

Author

Jianing Song, Aug 05 2018

Keywords

Comments

Period 15: repeat [0, 1, 1, 0, 1, 0, 0, -1, 1, 0, 0, -1, 0, -1, -1].
Also a(n) = Kronecker(-15, n).
This sequence is one of the three non-principal real Dirichlet characters modulo 15. The other two are Jacobi or Kronecker symbols (n, 45) (or (45, n)) and (n, 75) (or (-75, n)).
Note that (Sum_{i=0..14} i*a(i))/(-15) = 2 gives the class number of the imaginary quadratic field Q(sqrt(-15)).

Crossrefs

Cf. A035175 (inverse Moebius transform).
Kronecker symbols: A063524 ((n, 0) or (0, n)), A000012 ((n, 1) or (1, n)), A091337 ((n, 2) or (2, n) or (n, 8) or (8, n)), A102283 ((n, 3) or (-3, n)), A000035 ((n, 4) or (4, n) or (n, 16) or (16, n)), A080891 ((n, 5) or (5, n)), A109017 ((n, 6) or (-6, n)), A175629 ((n, 7) or (-7, n)), A011655 ((n, 9) or (9, n)), A011582 ((n, 11) or (-11, n)), A134667 ((n, 12) or (-12, n)), A011583 ((n, 13) or (13, n)), this sequence ((n, 15) or (-15, n)).

Programs

  • Magma
    [KroneckerSymbol(-15, n): n in [0..100]]; // Vincenzo Librandi, Aug 28 2018
  • Mathematica
    Array[ JacobiSymbol[#, 15] &, 90, 0] (* Robert G. Wilson v, Aug 06 2018 *)
    PadRight[{},100,{0,1,1,0,1,0,0,-1,1,0,0,-1,0,-1,-1}] (* Harvey P. Dale, Feb 20 2023 *)
  • PARI
    a(n) = kronecker(n, 15)
    

Formula

a(n) = 1 for n == 1, 2, 4, 8 (mod 15); -1 for n == 7, 11, 13, 14 (mod 15); 0 for n that are not coprime with 15.
Completely multiplicative with a(p) = a(p mod 15) for primes p.
a(n) = A102283(n)*A080891(n).
a(n) = a(n+15) = -a(-n) for all n in Z.
From Chai Wah Wu, Feb 16 2021: (Start)
a(n) = a(n-1) - a(n-3) + a(n-4) - a(n-5) + a(n-7) - a(n-8) for n > 7.
G.f.: (x^7 - x^5 + 2*x^4 - x^3 + x)/(x^8 - x^7 + x^5 - x^4 + x^3 - x + 1). (End)

A123864 Expansion of (eta(q^3) * eta(q^5))^2 / (eta(q) * eta(q^15)) in powers of q.

Original entry on oeis.org

1, 1, 2, 1, 3, 1, 2, 0, 4, 1, 2, 0, 3, 0, 0, 1, 5, 2, 2, 2, 3, 0, 0, 2, 4, 1, 0, 1, 0, 0, 2, 2, 6, 0, 4, 0, 3, 0, 4, 0, 4, 0, 0, 0, 0, 1, 4, 2, 5, 1, 2, 2, 0, 2, 2, 0, 0, 2, 0, 0, 3, 2, 4, 0, 7, 0, 0, 0, 6, 2, 0, 0, 4, 0, 0, 1, 6, 0, 0, 2, 5, 1, 0, 2, 0, 2, 0, 0, 0, 0, 2, 0, 6, 2, 4, 2, 6, 0, 2, 0, 3, 0, 4, 0, 0
Offset: 0

Views

Author

Michael Somos, Oct 14 2006

Keywords

Comments

Number 31 of the 74 eta-quotients listed in Table I of Martin (1996).
Multiplicative because this sequence is the inverse Moebius transform of a multiplicative sequence Kronecker(-15, n). - Andrew Howroyd, Jul 27 2018

Examples

			G.f. = 1 + q + 2*q^2 + q^3 + 3*q^4 + q^5 + 2*q^6 + 4*q^8 + q^9 + 2*q^10 + ...
		

Crossrefs

Programs

  • Magma
    A := Basis( ModularForms( Gamma1(15), 1), 106); A[1] + A[2] + 2*A[3] + A[4] + 3*A[5] + A[6] + 2*A[7]; /* Michael Somos, Feb 10 2015 */
  • Mathematica
    a[ n_] := SeriesCoefficient[ (QPochhammer[ q^3] QPochhammer[ q^5])^2 / ( QPochhammer[ q] QPochhammer[ q^15]), {q, 0, n}]; (* Michael Somos, Feb 10 2015 *)
    a[ n_] := If[ n < 1, Boole[n == 0], Sum[ KroneckerSymbol[ -15, d], { d, Divisors[ n]}]]; (* Michael Somos, Feb 10 2015 *)
  • PARI
    {a(n) = if( n<1, n==0, sumdiv( n, d, kronecker( -15, d)))};
    
  • PARI
    {a(n) = if( n<1, n==0, (qfrep( [2, 1; 1, 8],n, 1) + qfrep( [4, 1; 1, 4], n, 1))[n])};
    
  • PARI
    {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^3 + A) * eta(x^5 + A))^2 / (eta(x + A) * eta(x^15 + A)), n))};
    

Formula

Euler transform of period 15 sequence [ 1, 1, -1, 1, -1, -1, 1, 1, -1, -1, 1, -1, 1, 1, -2, ...].
Moebius transform is period 15 sequence [ 1, 1, 0, 1, 0, 0, -1, 1, 0, 0, -1, 0, -1, -1, 0, ...].
G.f. A(q) satisfies 0 = f(A(q), A(q^2), A(q^4)) where f(u, v, w) = - v^3 + 4*u*v*w - 2*u*w^2 - u^2*w.
G.f.: Product_{k>0} ((1 - x^(3*k)) * (1 - x^(5*k)))^2 / ((1 - x^k) * (1 - x^(15*k))).
G.f.: (1/2) * (Sum_{n,m in Z} x^(n^2 + n*m + 4*m^2) + x^(2*n^2 + n*m + 2*m^2)).
a(15*n + 7) = a(15*n + 11) = a(15*n + 13) = a(15*n + 14) = 0. a(3*n) = a(n).
a(n) = A035175(n) unless n=0. a(n) = |A106406(n)| unless n=0.
G.f. is a period 1 Fourier series which satisfies f(-1 / (15 t)) = 15^(1/2) (t/i) f(t) where q = exp(2 Pi i t). - Michael Somos, Feb 10 2015
a(n) = Sum_{d | n} Kronecker(-15, d). - Andrew Howroyd, Jul 27 2018
From Amiram Eldar, Feb 20 2024: (Start)
Multiplicative with a(p^e) = 1 if p = 3 or 5, e + 1 if Kronecker(-15, p) = 1, and 1 - (e mod 2) if Kronecker(-15, p) = -1.
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 2*Pi/sqrt(15). (End)

A106406 Expansion of (eta(q) * eta(q^15))^2 / (eta(q^3) * eta(q^5)) in powers of q.

Original entry on oeis.org

1, -2, -1, 3, -1, 2, 0, -4, 1, 2, 0, -3, 0, 0, 1, 5, -2, -2, 2, -3, 0, 0, -2, 4, 1, 0, -1, 0, 0, -2, 2, -6, 0, 4, 0, 3, 0, -4, 0, 4, 0, 0, 0, 0, -1, 4, -2, -5, 1, -2, 2, 0, -2, 2, 0, 0, -2, 0, 0, 3, 2, -4, 0, 7, 0, 0, 0, -6, 2, 0, 0, -4, 0, 0, -1, 6, 0, 0, 2
Offset: 1

Views

Author

Michael Somos, May 02 2005

Keywords

Comments

Number 30 of the 74 eta-quotients listed in Table I of Martin (1996).

Examples

			G.f. = q - 2*q^2 - q^3 + 3*q^4 - q^5 + 2*q^6 - 4*q^8 + q^9 + 2*q^10 + ...
		

Crossrefs

Programs

  • Magma
    A := Basis( ModularForms( Gamma1(15), 1), 80); A[2] - 2*A[3] - A[4] + 3*A[5] - A[6] + 2*A[7]; /* Michael Somos, May 18 2015 */
  • Mathematica
    a[ n_] := SeriesCoefficient[ q (QPochhammer[ q] QPochhammer[ q^15])^2 / (QPochhammer[ q^3] QPochhammer[ q^5]), {q, 0, n}]; (* Michael Somos, May 18 2015 *)
    a[ n_] := If[ n < 1, 0, DivisorSum[ n, KroneckerSymbol[ #, 3] KroneckerSymbol[ n/#, 5] &]]; (* Michael Somos, May 18 2015 *)
  • PARI
    {a(n) = my(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( eta(x + A)^2 * eta(x^15 + A)^2 / (eta(x^3 + A) * eta(x^5 + A)), n))};
    
  • PARI
    {a(n) = if( n<1, 0, sumdiv( n, d, kronecker( d, 3) * kronecker( n/d, 5)))};
    
  • PARI
    {a(n) = my(A, p, e, x); if( n<1, 0, A = factor(n); prod( k=1, matsize(A)[1], [p, e] = A[k,]; if( p==3 || p==5, (-1)^e, (p%15) != 2^(x = valuation( p%15, 2)), (e+1)%2, (e+1) * (-1)^(x*e))))};
    
  • PARI
    {a(n) = if( n<1, 0, (qfrep([2, 1;1, 8],n, 1) - qfrep([4, 1;1, 4], n, 1))[n])}; /* Michael Somos, Aug 25 2006 */
    

Formula

Euler transform of period 15 sequence [-2, -2, -1, -2, -1, -1, -2, -2, -1, -1, -2, -1, -2, -2, -2, ...].
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^4)) where f(u, v, w) = -v^3 + 4 * u*v*w + 2 * u*w^2 + u^2*w.
a(n) is multiplicative with a(3^e) = a(5^e) = (-1)^e, a(p^e) = (1 + (-1)^e) / 2 if p == 7, 11, 13, 14 (mod 15), a(p^e) = e+1 if p == 1, 4 (mod 15), a(p^e) = (e+1) * (-1)^e if p == 2, 8 (mod 15). - Michael Somos, Oct 19 2005
G.f.: (1/2) * (Sum_{n,m in Z} x^(n^2 + n*m + 4*m^2) - x^(2*n^2 + n*m + 2 *m^2)). - Michael Somos, Aug 25 2006
G.f.: Sum_{k>0} Kronecker(k, 3) * x^k * (1 - x^k) * (1 - x^(2*k)) / (1 - x^(5*k)) = Sum_{k>0} Kronecker(k, 5) * x^k * (1 - x^k) / (1 - x^(3*k)).
G.f.: x * Product_{k>0} ((1 - x^k) * (1 - x^(15*k)))^2 / ((1 - x^(3*k)) * (1 - x^(5*k))).
a(15*n + 7) = a(15*n + 11) = a(15*n + 13) = a(15*n + 14) = 0. a(3*n) = a(5*n) = -a(n).
A035175(n) = |a(n)|. a(n)>0 iff n in A028957. a(n)<0 iff n in A028955.
G.f. is a period 1 Fourier series which satisfies f(-1 / (15 t)) = 15^(1/2) (t/i) f(t) where q = exp(2 Pi i t). - Michael Somos, May 18 2015

A260649 Expansion of (phi(q^3) * phi(q^5) + phi(q) * phi(q^15)) / 2 - 1 in powers of q where phi(q) is a Ramanujan theta function.

Original entry on oeis.org

1, 0, 1, 1, 1, 0, 0, 2, 1, 0, 0, 1, 0, 0, 1, 3, 2, 0, 2, 1, 0, 0, 2, 2, 1, 0, 1, 0, 0, 0, 2, 4, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 0, 1, 0, 2, 3, 1, 0, 2, 0, 2, 0, 0, 0, 2, 0, 0, 1, 2, 0, 0, 5, 0, 0, 0, 2, 2, 0, 0, 2, 0, 0, 1, 2, 0, 0, 2, 3, 1, 0, 2, 0, 2, 0, 0
Offset: 1

Views

Author

Michael Somos, Nov 12 2015

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = x + x^3 + x^4 + x^5 + 2*x^8 + x^9 + x^12 + x^15 + 3*x^16 + 2*x^17 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := If[ n < 1, 0, DivisorSum[ n, KroneckerSymbol[ -15, #] If[ Mod[#, 4] == 2, -1, 1] &]];
    a[ n_] := If[ n < 1, 0, Times@@ (Which[# == 1, 1, # == 2, #2 - 1, # < 6, 1, KroneckerSymbol[#, -15] == 1, #2 + 1, True, 1 - Mod[#2, 2]]& @@@ FactorInteger[n])];
    a[ n_] := SeriesCoefficient[QPochhammer[ q^2]^2 QPochhammer[ q^6] QPochhammer[ q^10] QPochhammer[ q^30]^2 / (QPochhammer[ q] QPochhammer[ q^4] QPochhammer[ q^15] QPochhammer[ q^60]) - 1, {q, 0, n}];
  • PARI
    {a(n) = if( n<1, 0, sumdiv(n, d, kronecker(-15, d) * (-1)^(d%4==2) ))};
    
  • PARI
    {a(n) = if( n<1, 0, qfrep( [1, 0; 0, 15], n)[n] + qfrep( [3, 0; 0, 5], n)[n] )};
    
  • PARI
    {a(n) = my(A, p, e); if( n<1, 0, A = factor(n); prod(k=1, matsize(A)[1], [p, e] = A[k, ]; if( p==2, e-1, p==3 || p==5, 1, kronecker(p, -15) == 1, e+1, 1-e%2 )))};
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^2 * eta(x^6 + A) * eta(x^10 + A) * eta(x^30 + A)^2 / (eta(x + A) * eta(x^4 + A) * eta(x^15 + A) * eta(x^60 + A)) - 1, n))};

Formula

Expansion of (eta(q^2)^2 * eta(q^6) * eta(q^10) * eta(q^30)^2) / (eta(q) * eta(q^4) * eta(q^15) * eta(q^60)) - 1 in powers of q.
a(n) is multiplicative with a(2^e) = |e-1|, a(3^e) = a(5^e) = 1, a(p^e) = e+1 if p == 1, 2, 4, 8 (mod 15), a(p^e) = (1 + (-1)^e)/2 if p == 7, 11, 13, 14 (mod 15).
Moebius transform of a period 60 sequence.
G.f.: Sum_{k>0} Kronecker(-15, k) x^k / (1 - (-x)^k).
a(n) = A122855(n) unless n=0.
a(3*n) = a(5*n) = a(n). a(4*n) = A035175(n). a(4*n + 2) = 0.
a(15*n + 7) = a(15*n + 11) = a(15*n + 13) = a(15*n + 14) = 0.
Previous Showing 21-25 of 25 results.