cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-15 of 15 results.

A286653 Square array A(n,k), n>=0, k>=1, read by antidiagonals, where column k is the expansion of Product_{j>=1} (1 - x^(k*j))/(1 - x^j).

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 2, 2, 0, 1, 1, 2, 2, 2, 0, 1, 1, 2, 3, 4, 3, 0, 1, 1, 2, 3, 4, 5, 4, 0, 1, 1, 2, 3, 5, 6, 7, 5, 0, 1, 1, 2, 3, 5, 6, 9, 9, 6, 0, 1, 1, 2, 3, 5, 7, 10, 12, 13, 8, 0, 1, 1, 2, 3, 5, 7, 10, 13, 16, 16, 10, 0, 1, 1, 2, 3, 5, 7, 11, 14, 19, 22, 22, 12, 0
Offset: 0

Views

Author

Ilya Gutkovskiy, May 11 2017

Keywords

Comments

A(n,k) is the number of partitions of n in which no parts are multiples of k.
A(n,k) is also the number of partitions of n into at most k-1 copies of each part.

Examples

			Square array begins:
  1,  1,  1,  1,  1,  1,  ...
  0,  1,  1,  1,  1,  1,  ...
  0,  1,  2,  2,  2,  2,  ...
  0,  2,  2,  3,  3,  3,  ...
  0,  2,  4,  4,  5,  5,  ...
  0,  3,  5,  6,  6,  7,  ...
		

Crossrefs

Main diagonal gives A000041.
Mirror of A061198.

Programs

  • Maple
    b:= proc(n, i, k) option remember; `if`(n=0, [1, 0], `if`(k*i*(i+1)/2[0, l[1]*j]+l)(b(n-i*j, i-1, k)), j=0..min(n/i, k))))
        end:
    A:= (n, k)-> b(n$2, k-1)[1]:
    seq(seq(A(n, 1+d-n), n=0..d), d=0..16);  # Alois P. Heinz, Oct 17 2018
  • Mathematica
    Table[Function[k, SeriesCoefficient[Product[(1 - x^(i k))/(1 - x^i), {i, Infinity}], {x, 0, n}]][j - n + 1], {j, 0, 12}, {n, 0, j}] // Flatten
    Table[Function[k, SeriesCoefficient[QPochhammer[x^k, x^k]/QPochhammer[x, x], {x, 0, n}]][j - n + 1], {j, 0, 12}, {n, 0, j}] // Flatten

Formula

G.f. of column k: Product_{j>=1} (1 - x^(k*j))/(1 - x^j).

A213598 Number of partitions of n in which no parts are multiples of 49.

Original entry on oeis.org

1, 1, 2, 3, 5, 7, 11, 15, 22, 30, 42, 56, 77, 101, 135, 176, 231, 297, 385, 490, 627, 792, 1002, 1255, 1575, 1958, 2436, 3010, 3718, 4565, 5604, 6842, 8349, 10143, 12310, 14883, 17977, 21637, 26015, 31185, 37338, 44583, 53174, 63261, 75175, 89134, 105558, 124754, 147273, 173524
Offset: 0

Views

Author

Michael Somos, Jun 14 2012

Keywords

Comments

For n<49 we have a(n)=A000041(n), for n>=49 a(n)!=A000041(n).
In Fricke page 401, he gives the expansion sigma(omega) = q^4 + q^6 + 2q^8 + 3q^10 + 5q^12 + 7q^14 + 11q^16 + 15q^18 + ... where q = exp( Pi i omega).

Examples

			G.f. = 1 + x + 2*x^2 + 3*x^3 + 5*x^4 + 7*x^5 + 11*x^6 + 15*x^7 + 22*x^8 + ...
G.f. = q^2 + q^3 + 2*q^4 + 3*q^5 + 5*q^6 + 7*q^7 + 11*q^8 + 15*q^9 + 22*q^10 + ...
		

References

  • R. Fricke, Die elliptischen Funktionen und ihre Anwendungen, Teubner, 1922, Vol. 2, see p. 401. Eq. (49)

Crossrefs

Cf. A000009 (m=2), A000726 (m=3), A001935 (m=4), A035959 (m=5), A219601 (m=6), A035985 (m=7), A261775 (m=8), A104502 (m=9), A261776 (m=10), A092885 (m=25), this sequence (m=49).

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ Product[ 1 - x^k, {k, 49, n, 49}] / Product[ 1 - x^k, {k, n}], {x, 0, n}];
    a[ n_] := SeriesCoefficient[ QPochhammer[ x^49] / QPochhammer[ x], {x, 0, n}]; (* Michael Somos, May 13 2014 *)
  • PARI
    {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^49 + A) / eta(x + A), n))};

Formula

Expansion of q^(-2) * eta(q^49) / eta(q) in powers of q.
Euler transform of period 49 sequence [ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, ...].
Given g.f. A(x) then B(x) = x^2 * A(x) satisfies 0 = f(B(x), B(x^2),
B(x^4)) where f(u, v, w) = u * v * w * (1 - 7*v^2) - (v - w) * (u - v) * (v^2 - u*w).
G.f. is a period 1 Fourier series which satisfies f(-1 / (49 t)) = 1 / (7 f(t)) where q = exp(2 Pi i t).
G.f.: Product_{k>0} (1 - x^(49*k)) / (1 - x^k).
a(n) ~ exp(4*Pi*sqrt(2*n)/7) / (2^(1/4) * 7^(3/2) * n^(3/4)). - Vaclav Kotesovec, Oct 14 2015
a(n) = (1/n)*Sum_{k=1..n} A287926(k)*a(n-k), a(0) = 1. - Seiichi Manyama, Jun 16 2017

A320609 Number of parts in all partitions of n in which no part occurs more than six times.

Original entry on oeis.org

1, 3, 6, 12, 20, 35, 47, 78, 111, 165, 228, 330, 444, 614, 820, 1108, 1452, 1930, 2491, 3255, 4175, 5366, 6802, 8665, 10880, 13705, 17089, 21336, 26401, 32716, 40207, 49458, 60452, 73863, 89780, 109101, 131902, 159415, 191864, 230741, 276470, 331021, 394970
Offset: 1

Views

Author

Alois P. Heinz, Oct 17 2018

Keywords

Crossrefs

Column k=6 of A210485.
Cf. A035985.

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, [1, 0], `if`(3*i*(i+1) [0, l[1]*j]+l)(b(n-i*j, min(n-i*j, i-1))), j=0..min(n/i, 6))))
        end:
    a:= n-> b(n$2)[2]:
    seq(a(n), n=1..50);
  • Mathematica
    Table[Length[Flatten[Select[IntegerPartitions[n], Max[Tally[#][[All, 2]]] <= 6 &]]], {n, 43}] (* Robert Price, Jul 31 2020 *)

Formula

a(n) ~ log(7) * exp(2*Pi*sqrt(n/7)) / (2 * Pi * 7^(1/4) * n^(1/4)). - Vaclav Kotesovec, Oct 18 2018

A244600 Expansion of f(-x) / f(-x^7) in powers of x where f() is a Ramanujan theta function.

Original entry on oeis.org

1, -1, -1, 0, 0, 1, 0, 2, -1, -1, 0, 0, 0, 0, 3, -3, -2, 0, 0, 1, 0, 5, -3, -3, 0, 0, 2, 0, 8, -6, -5, 0, 0, 3, 0, 11, -8, -7, 0, 0, 3, 0, 17, -13, -11, 0, 0, 6, 0, 24, -17, -14, 0, 0, 7, 0, 34, -25, -21, 0, 0, 11, 0, 47, -33, -28, 0, 0, 14, 0, 64, -47, -39
Offset: 0

Views

Author

Michael Somos, Jul 01 2014

Keywords

Examples

			G.f. = 1 - x - x^2 + x^5 + 2*x^7 - x^8 - x^9 + 3*x^14 - 3*x^15 - 2*x^16 + ...
G.f. = q^-1 - q^3 - q^7 + q^19 + 2*q^27 - q^31 - q^35 + 3*q^55 - 3*q^59 + ...
		

Crossrefs

Cf. A035985.

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ QPochhammer[ x] / QPochhammer[ x^7], {x, 0, n}];
  • PARI
    {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A) / eta(x^7 + A), n))};

Formula

Expansion of q^(1/4) * eta(q) / eta(q^7) in powers of q.
Euler transform of period 7 sequence [ -1, -1, -1, -1, -1, -1, 0, ...].
Given g.f. A(x), then B(q) = A(q^4) / q satisfies 0 = f(B(q), B(q^3)) where f(u, v) = (u - v^3) * (u^3 - v) - 3*u*v * (2 + u*v).
G.f. is a period 1 Fourier series which satisfies f(-1 / (112 t)) = 7^(1/2) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A035985.
G.f.: Product_{k>0} (1 - x^k) / (1 - x^(7*k)).
Convolution inverse of A035985.
a(7*n + 3) = a(7*n + 4) = a(7*n + 6) = 0.
a(n) = -(1/n)*Sum_{k=1..n} A113957(k)*a(n-k), a(0) = 1. - Seiichi Manyama, Mar 25 2017

A124094 Table T(n,m) giving number of partitions of n such that all parts are coprime to m. Read along antidiagonals (increasing n, decreasing m).

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 2, 2, 5, 1, 1, 1, 2, 2, 7, 1, 1, 2, 2, 4, 3, 11, 1, 1, 1, 3, 2, 5, 4, 15, 1, 1, 2, 1, 5, 3, 7, 5, 22, 1, 1, 1, 3, 1, 6, 4, 9, 6, 30, 1, 1, 2, 2, 5, 2, 10, 5, 13, 8, 42, 1, 1, 1, 2, 2, 7, 2, 13, 6, 16, 10, 56, 1, 1, 2, 2, 4, 3, 11, 3, 19, 8, 22, 12, 77, 1, 1, 1, 3, 2, 5, 4
Offset: 0

Views

Author

R. J. Mathar, Nov 26 2006

Keywords

Examples

			Upper left corner of table starts with row m=1 and column n=0:
1,1,2,3,5,7,11,15,22,30,42,56,77,101,135,176,231,297,385,490,627,792,1002,1255,
1,1,1,2,2,3, 4, 5, 6, 8,10,12,15, 18, 22, 27, 32, 38, 46, 54, 64, 76,  89, 104,
1,1,2,2,4,5, 7, 9,13,16,22,27,36, 44, 57, 70, 89,108,135,163,202,243, 297, 355,
1,1,1,2,2,3, 4, 5, 6, 8,10,12,15, 18, 22, 27, 32, 38, 46, 54, 64, 76,  89, 104,
1,1,2,3,5,6,10,13,19,25,34,44,60, 76,100,127,164,205,262,325,409,505, 628, 769,
1,1,1,1,1,2, 2, 3, 3, 3, 4, 5, 6,  7,  8,  9, 10, 12, 14, 16, 18, 20,  23,  26,
1,1,2,3,5,7,11,14,21,28,39,51,70, 90,119,153,199,252,324,406,515,642, 804, 994,
1,1,1,2,2,3, 4, 5, 6, 8,10,12,15, 18, 22, 27, 32, 38, 46, 54, 64, 76,  89, 104,
1,1,2,2,4,5, 7, 9,13,16,22,27,36, 44, 57, 70, 89,108,135,163,202,243, 297, 355,
1,1,1,2,2,2, 3, 4, 4, 6, 7, 8,10, 12, 14, 16, 19, 22, 26, 30, 35, 41,  47,  54,
1,1,2,3,5,7,11,15,22,30,42,55,76, 99,132,171,224,286,370,468,597,750, 945,1177,
1,1,1,1,1,2, 2, 3, 3, 3, 4, 5, 6,  7,  8,  9, 10, 12, 14, 16, 18, 20,  23,  26,
1,1,2,3,5,7,11,15,22,30,42,56,77,100,134,174,228,292,378,479,612,770, 972,1213,
1,1,1,2,2,3, 4, 4, 5, 7, 8,10,12, 14, 17, 21, 24, 28, 34, 39, 46, 53,  61,  71,
1,1,2,2,4,4, 6, 7,11,12,16,19,25, 29, 37, 44, 56, 65, 80, 94,114,133, 160, 187,
1,1,1,2,2,3, 4, 5, 6, 8,10,12,15, 18, 22, 27, 32, 38, 46, 54, 64, 76,  89, 104,
1,1,2,3,5,7,11,15,22,30,42,56,77,101,135,176,231,296,384,488,624,787, 995,1244,
1,1,1,1,1,2, 2, 3, 3, 3, 4, 5, 6,  7,  8,  9, 10, 12, 14, 16, 18, 20,  23,  26,
1,1,2,3,5,7,11,15,22,30,42,56,77,101,135,176,231,297,385,489,626,790, 999,1250,
1,1,1,2,2,2, 3, 4, 4, 6, 7, 8,10, 12, 14, 16, 19, 22, 26, 30, 35, 41,  47,  54,
		

Crossrefs

Row m=1 is A000041. Rows m=2, 4, 8, ... (where m is a power of 2) are A000009. Rows m=3, 9, ... (where m is a power of 3) are A000726. Row m=5 is A035959. Row=7 is A035985. Row m=10 is A096938.

Programs

  • Maple
    b:= proc(n, i, m) option remember;
          if n<0 then 0
        elif n=0 then 1
        elif i<1 then 0
        else b(n, i-1, m) +`if`(igcd(m, i)=1, b(n-i, i, m), 0)
          fi
        end:
    T:= (n, m)-> b(n, n, m):
    seq (seq (T(n, 1+d-n), n=0..d), d=0..13);  # Alois P. Heinz, Sep 28 2011
  • Mathematica
    b[n_, i_, m_] := b[n, i, m] = Which[n < 0, 0, n == 0, 1, i < 1, 0, True, b[n, i-1, m] + If[GCD[m, i] == 1, b[n-i, i, m], 0]]; t[n_, m_] := b[n, n, m]; Table[Table[t[n, 1+d-n], {n, 0, d}], {d, 0, 13}] // Flatten (* Jean-François Alcover, Jan 10 2014, translated from Alois P. Heinz's Maple code *)
  • PARI
    sigmastar(n,m)= { local(d,res=0) ; d=divisors(n) ; for(i=1,matsize(d)[2], if( gcd(d[i],m)==1, res += d[i] ; ) ; ) ; return(res) ; } f(n,m)= { local(qvec=vector(n+1,i,gcd(1,m))) ; for(i=1,n, qvec[i+1]=sum(k=1,i,sigmastar(k,m)*qvec[i-k+1])/i ; ) ; return(qvec[n+1]) ; } { for(d=1,18, for(c=0,d-1, r=d-c ; print1(f(c,r),",") ; ) ; ) ; }
Previous Showing 11-15 of 15 results.