cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-48 of 48 results.

A348202 Number of nonnegative lattice paths from (0,0) to (n,0) using steps in {(1,-4), (1,-1), (1,0), (1,1)}.

Original entry on oeis.org

1, 1, 2, 4, 9, 22, 57, 155, 435, 1249, 3645, 10770, 32143, 96747, 293359, 895373, 2748803, 8483035, 26302248, 81896176, 255967640, 802790415, 2525691721, 7968972542, 25209580699, 79942927651, 254077293876, 809192984902, 2582113984084, 8254273128869
Offset: 0

Views

Author

Alois P. Heinz, Oct 06 2021

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(x, y) option remember; `if`(y<0 or y>x, 0,
         `if`(x=0, 1, add(b(x-1, y-j), j=[-4, -1, 0, 1])))
        end:
    a:= n-> b(n, 0):
    seq(a(n), n=0..31);
  • Mathematica
    b[x_, y_] := b[x, y] = If[y < 0 || y > x, 0, If[x == 0, 1, Sum[b[x - 1, y - j], {j, {-4, -1, 0, 1}}]]];
    a[n_] := b[n, 0];
    Table[a[n], {n, 0, 31}] (* Jean-François Alcover, Dec 28 2022, after Alois P. Heinz *)

Formula

a(n) ~ c * d^n / n^(3/2), where d = 3.3640233336410979391691803264403704977... is the root of the equation 256*d^5 - 1280*d^4 + 960*d^3 + 2267*d^2 - 1324*d - 4112 = 0 and c = 0.710307351107763693658610320440791667652705027171696102847138... - Vaclav Kotesovec, Oct 24 2021

A378426 Expansion of (1/x) * Series_Reversion( x / (1 + x + x^2 * (1 + x)^2) ).

Original entry on oeis.org

1, 1, 2, 6, 18, 56, 184, 624, 2161, 7621, 27283, 98869, 361967, 1336843, 4974763, 18634683, 70207751, 265874119, 1011475368, 3863846328, 14814818017, 56994831109, 219941836172, 851138940402, 3302281633591, 12842844277471, 50056915575566, 195503017533502
Offset: 0

Views

Author

Seiichi Manyama, Nov 25 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serreverse(x/(1+x+x^2*(1+x)^2))/x)
    
  • PARI
    a(n) = sum(k=0, n\2, binomial(n+1, k)*binomial(n+k+1, n-2*k))/(n+1);

Formula

G.f.: exp( Sum_{k>=1} A378405(k) * x^k/k ).
a(n) = (1/(n+1)) * [x^n] (1 + x + x^2 * (1 + x)^2)^(n+1).
a(n) = (1/(n+1)) * Sum_{k=0..floor(n/2)} binomial(n+1,k) * binomial(n+k+1,n-2*k).

A382060 Number of rooted ordered trees with n nodes such that the degree of each node is less than or equal to its depth plus one.

Original entry on oeis.org

1, 1, 1, 1, 2, 4, 10, 27, 77, 231, 719, 2302, 7541, 25177, 85405, 293635, 1021272, 3587674, 12713796, 45402113, 163244197, 590529759, 2147915920, 7851127319, 28826079193, 106268313333, 393218951710, 1459969448090, 5437679646441, 20311366912839, 76072367645347, 285623120079865, 1074888308119285
Offset: 0

Views

Author

John Tyler Rascoe, Mar 14 2025

Keywords

Comments

The root vertex is depth d=0 and is to have <= d+1 = 1 children so these are "planted" trees.

Examples

			a(5) = 4 counts:
                               depth:
   o     o       o       o       0
   |     |       |       |
   o     o       o       o       1
   |     |      / \     / \
   o     o     o   o   o   o     2
   |    / \    |           |
   o   o   o   o           o     3
   |
   o                             4
		

Crossrefs

Programs

  • PARI
    \\ see links
  • Python
    # see links
    

A262082 Array of coefficients A(n,k) of the formal power series P(n,x) read by upwards antidiagonals, where P(n,x) = Sum_{k>=0} A(n,k)*x^k = 1 + x*P(n,x)^(1*n) + x^2*P(n,x)^(2*n) + x^3*P(n,x)^(3*n) for n >= 0.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 5, 0, 1, 1, 4, 12, 13, 0, 1, 1, 5, 22, 54, 36, 0, 1, 1, 6, 35, 139, 262, 104, 0, 1, 1, 7, 51, 284, 953, 1337, 309, 0, 1, 1, 8, 70, 505, 2509, 6894, 7072, 939, 0, 1, 1, 9, 92, 818, 5455, 23426, 51796, 38426, 2905, 0, 1, 1, 10
Offset: 0

Views

Author

Werner Schulte, Sep 10 2015

Keywords

Comments

The terms define the array A(n,k):
n\k: 0 1 2 3 4 5 6 7 8 9 10 ...
0: 1 1 1 1 0 0 0 0 0 0 0 ...
1: 1 1 2 5 13 36 104 309 939 2905 ...
2: 1 1 3 12 54 262 1337 7072 38426 ...
3: 1 1 4 22 139 953 6894 51796 400269 ...
4: 1 1 5 35 284 2509 23426 ...
5: 1 1 6 51 505 5455 62336 ...
6: 1 1 7 70 818 ...
7: 1 1 8 92 ...
8: 1 1 9 ...
9: 1 1 10 ...
10: 1 1 ...
11: 1 ...
etc.
For row 1 see A036765, for row 2 see A186241, and for row 3 see A200731.
Conjecture 1: The A(n,k), here n > 0, are the number of lattice paths, if
(a) length of path is k*n (for the k-th term of row n),
(b) allowed steps are (1,-1), (1,-1+n), (1,-1+2*n), and (1,-1+3*n),
(c) you start at (0,0), end at (k*n,0), and
(d) never cross the x-axis.
Conjecture 2: The coefficients B(m,n,k) of the P(n,x)^m (see the formula below), m > 0 and n > 0, are the number of lattice paths, if
(a) length of path is k*n+m-1 (k-th coefficient of P(n,x)^m),
(b) allowed steps are (1,-1), (1,-1+n), (1,-1+2*n), and (1,-1+3*n),
(c) you start at (0,m-1), end at (k*n+m-1,0), and
(d) never cross the x-axis.

Examples

			The terms of the array A(n,k) read by upwards antidiagonals define the triangle T(n,m) = A(n-m,m) for 0 <= m <= n, i.e.,
n\m 0  1   2   3    4     5     6     7    8  9 ...
0:  1
1:  1  1
2:  1  1   1
3:  1  1   2   1
4:  1  1   3   5    0
5:  1  1   4  12   13     0
6:  1  1   5  22   54    36     0
7:  1  1   6  35  139   262   104     0
8:  1  1   7  51  284   953  1337   309    0
9:  1  1   8  70  505  2509  6894  7072  939  0
etc. [reformatted by _Wolfdieter Lang_, Oct 15 2015]
		

Crossrefs

Formula

A(n,k) = 1/(n*k+1) * Sum_{j=0..k} (-2)^j*binomial(n*k+1,j)* binomial(3*n*k+3-2*j,k-j) for n >= 0, and k >= 0. (conjectured)
A(n,0) = A(n,1) = 1, n >= 0;
A(n,2) = n+1, n >= 0;
A(n,3) = (3*n^2+5*n+2)/2, n >= 0;
A(n,4) = (8*n^3+18*n^2+13*n)/3, n >= 0;
A(n,5) = (125*n^4+350*n^3+355*n^2+34*n)/24, n >= 0.
The g.f. P(n,x) of row n of the array A(n,k) satisfy:
P(n,x) = P(n-1,x*P(n,x)), n > 0;
P(n,x) = P(n-2,x*P(n,x)^2), n > 1;
etc.
P(n,x) = P(0,x*P(n,x)^n), n >= 0.
The coefficients B(m,n,k) of the P(n,x)^m are:
B(m,n,k) = m/(n*k+m) * Sum_{j=0..k} (-2)^j*binomial(n*k+m,j)* binomial(3*n*k+3*m-2*j,k-j) for m > 0, n > 0, and k >= 0. (conjectured)
P(n,x) = exp(Sum_{k>=1} 1/(n*k)*(Sum_{j=0..k} (-2)^j*binomial(n*k,j)* binomial(3*n*k-2*j,k-j))) for n > 0 (conjectured); (see for n=1: A036765, for n=2: A186241, and for n=3: A200731).
P(n,x/(1+x+x^2+x^3)^n) = 1+x+x^2+x^3 for n >= 0. - Werner Schulte, Nov 20 2015

A369439 Expansion of (1/x) * Series_Reversion( x / ((1+x)^2 * (1+x^2)) ).

Original entry on oeis.org

1, 2, 6, 22, 89, 382, 1708, 7870, 37108, 178184, 868318, 4283402, 21347902, 107330004, 543707480, 2772469998, 14219396908, 73303128344, 379621891640, 1974078923416, 10303600000553, 53960438323438, 283461807342876, 1493252678987602, 7886649917261724
Offset: 0

Views

Author

Seiichi Manyama, Jan 23 2024

Keywords

Crossrefs

Cf. A036765.

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serreverse(x/((1+x)^2*(1+x^2)))/x)
    
  • PARI
    a(n, s=2, t=1, u=2) = sum(k=0, n\s, binomial(t*(n+1), k)*binomial(u*(n+1), n-s*k))/(n+1);

Formula

a(n) = (1/(n+1)) * Sum_{k=0..floor(n/2)} binomial(n+1,k) * binomial(2*n+2,n-2*k).

A369444 Expansion of (1/x) * Series_Reversion( x / ((1+x) * (1+x^4)) ).

Original entry on oeis.org

1, 1, 1, 1, 2, 7, 22, 57, 131, 298, 738, 2003, 5600, 15380, 41224, 109769, 296009, 813315, 2261647, 6305930, 17554044, 48851034, 136350556, 382408995, 1077164245, 3042452536, 8606495236, 24377127256, 69159381856, 196600128592, 559990599808, 1597797525833
Offset: 0

Views

Author

Seiichi Manyama, Jan 23 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=40, x='x+O('x^N)); Vec(serreverse(x/((1+x)*(1+x^4)))/x)
    
  • PARI
    a(n, s=4, t=1, u=1) = sum(k=0, n\s, binomial(t*(n+1), k)*binomial(u*(n+1), n-s*k))/(n+1);

Formula

a(n) = (1/(n+1)) * Sum_{k=0..floor(n/4)} binomial(n+1,k) * binomial(n+1,n-4*k).

A384937 Number for rooted ordered trees with edge weights summing to n, where edge weights are all greater than zero, and the sequences of edge weights in all downward paths are weakly increasing.

Original entry on oeis.org

1, 1, 3, 9, 30, 103, 372, 1379, 5248, 20356, 80252, 320581, 1295018, 5280967, 21711163, 89890559, 374478935, 1568585095, 6602283315, 27910296899, 118448905668, 504466997897, 2155412350793, 9236401247438, 39686616306747, 170946789568804, 738024717474360
Offset: 0

Views

Author

John Tyler Rascoe, Jun 12 2025

Keywords

Examples

			The following tree with sum of edge weights 13 contains downward paths of edge weights (1), (2,3,4), and (2,3,3) all of which are weakly increasing. So this tree is counted under a(13) = 5280967.
           o
        2 / \ 1
         o   o
      3 / 	
       o
    4 / \ 3	
     o   o
		

Crossrefs

Programs

  • PARI
    w(j,k,N) = {if(k>N,1, 1/(1 - sum(i=j,N, x^i * w(i,k+1,N-i+1))))}
    Ax(N) = {Vec(w(1,1,N)+ O('x^(N+1)))}
    Ax(10)

Formula

G.f.: G_1(x) where G_k(x) = 1/(1 - Sum_{i>=k} x^i * G_i(x)).

A384938 Number for rooted ordered trees with edge weights summing to n, where edge weights are all greater than zero, and the sequences of edge weights in all downward paths are strictly increasing.

Original entry on oeis.org

1, 1, 2, 5, 11, 26, 61, 142, 334, 785, 1845, 4339, 10211, 24030, 56560, 133143, 313433, 737906, 1737275, 4090206, 9630067, 22673482, 53383917, 125691264, 295938451, 696785116, 1640579144, 3862745470, 9094847357, 21413863699, 50419073794, 118712060012, 279508439419
Offset: 0

Views

Author

John Tyler Rascoe, Jun 13 2025

Keywords

Examples

			The following tree with sum of edge weights 15 contains downward paths of edge weights (1), (2,3,4), and (2,3,5) all of which are weakly increasing. So this tree is counted under a(13) = 133143.
           o
        2 / \ 1
         o   o
      3 / 	
       o
    4 / \ 5	
     o   o
		

Crossrefs

Programs

  • PARI
    w(j,k,N) = {if(k>N,1, 1/(1 - sum(i=j+1,N, x^i * w(i,k+1,N-i+1))))}
    Bx(N) = {my(x='x+O('x^(N+1))); Vec(w(0,1,N)+ O('x^(N+1)))}
    Bx(10)

Formula

G.f.: G_0(x) where G_k(x) = 1/(1 - Sum_{i>k} x^i * G_i(x)).
Previous Showing 41-48 of 48 results.