A065748
Triangle of Gandhi polynomial coefficients.
Original entry on oeis.org
1, 1, 4, 6, 4, 15, 88, 220, 304, 250, 120, 28, 1025, 7308, 23234, 43420, 52880, 43880, 25088, 9680, 2340, 280, 209135, 1691024, 6237520, 13911400, 20956610, 22549360, 17853780, 10541440, 4639740, 1498280, 341000, 49920, 3640, 100482849
Offset: 1
Mike Domaratzki (mdomaratzki(AT)alumni.uwaterloo.ca), Nov 16 2001
Triangle starts
1;
1,4,6,4;
15,88,220,304,250,120,28;
1025,...
- Michael Domaratzki, Combinatorial Interpretations of a Generalization of the Genocchi Numbers, Journal of Integer Sequences, Vol. 7 (2004), Article 04.3.6.
- D. Dumont, Sur une conjecture de Gandhi concernant les nombres de Genocchi, (in French), Discrete Mathematics 1 (1972) 321-327.
- D. Dumont, Interprétations combinatoires des nombres de Genocchi, Duke Math. J., 41 (1974), 305-318.
- D. Dumont, Interprétations combinatoires des nombres de Genocchi, Duke Math. J., 41 (1974), 305-318. (Annotated scanned copy)
A195505
Numerator of Sum_{k=1..n} H(k)/k^2, where H(k) is the k-th harmonic number.
Original entry on oeis.org
1, 11, 341, 2953, 388853, 403553, 142339079, 1163882707, 31983746689, 32452469713, 43725835522403, 44184852180503, 97954699428176291, 98731028315167091, 99421162547987123, 800313205356878959, 3953829021224881128767, 3973669953994085875967
Offset: 1
a(2) = 11 because 1 + (1 + 1/2)/2^2 = 11/8.
The first few fractions are 1, 11/8, 341/216, 2953/1728, 388853/216000, 403553/216000, 142339079/74088000, 1163882707/592704000, ... = A195505/A195506. - _Petros Hadjicostas_, May 06 2020
-
s = 0; Table[s = s + HarmonicNumber[n]/n^2; Numerator[s], {n, 20}] (* T. D. Noe, Sep 20 2011 *)
-
H(n) = sum(k=1, n, 1/k);
a(n) = numerator(sum(k=1, n, H(k)/k^2)); \\ Michel Marcus, May 07 2020
A058942
Triangle of coefficients of Gandhi polynomials.
Original entry on oeis.org
1, 1, 1, 2, 4, 2, 8, 22, 20, 6, 56, 184, 224, 120, 24, 608, 2248, 3272, 2352, 840, 120, 9440, 38080, 62768, 54336, 26208, 6720, 720, 198272, 856480, 1550528, 1531344, 896064, 312480, 60480, 5040, 5410688, 24719488, 48207488, 52633344, 35371776
Offset: 1
Triangle starts:
[1]
[1, 1]
[2, 4, 2]
[8, 22, 20, 6]
[56, 184, 224, 120, 24]
[608, 2248, 3272, 2352, 840, 120]
[9440, 38080, 62768, 54336, 26208, 6720, 720]
[198272, 856480, 1550528, 1531344, 896064, 312480, 60480, 5040]
-
c[1][x_] = 1; c[n_][x_] := c[n][x] = (x+1)*((x+1)*c[n-1][x+1] - x*c[n-1][x]); Table[ CoefficientList[ c[n][x], x], {n, 9}] // Flatten (* Jean-François Alcover, Oct 09 2012 *)
-
# uses[delehamdelta from A084938]
def A058942_triangle(n) :
A = [((i+1)//2)^2 for i in (1..n)]
B = [((i+1)//2) for i in (1..n)]
return delehamdelta(A, B)
A058942_triangle(10) # Peter Luschny, Nov 09 2019
A065747
Triangle of Gandhi polynomial coefficients.
Original entry on oeis.org
1, 1, 3, 3, 7, 30, 51, 42, 15, 145, 753, 1656, 1995, 1410, 567, 105, 6631, 39048, 100704, 149394, 140475, 86562, 34566, 8316, 945, 566641, 3656439, 10546413, 17972598, 20133921, 15581349, 8493555, 3246642, 841239, 135135, 10395
Offset: 1
Mike Domaratzki (mdomaratzki(AT)alumni.uwaterloo.ca), Nov 16 2001
Triangle starts
1;
1, 3, 3;
7, 30, 51, 42, 15;
145, 753, 1656, 1995, 1410, 567, 105;
6631 ...
- Michael Domaratzki, Combinatorial Interpretations of a Generalization of the Genocchi Numbers, Journal of Integer Sequences, Vol. 7 (2004), Article 04.3.6.
- D. Dumont, Sur une conjecture de Gandhi concernant les nombres de Genocchi, (in French), Discrete Mathematics 1 (1972) 321-327.
- D. Dumont, Interprétations combinatoires des nombres de Genocchi, Duke Math. J., 41 (1974), 305-318.
- D. Dumont, Interprétations combinatoires des nombres de Genocchi, Duke Math. J., 41 (1974), 305-318. (Annotated scanned copy)
A065755
Triangle of Gandhi polynomial coefficients.
Original entry on oeis.org
1, 1, 5, 10, 10, 5, 31, 230, 755, 1440, 1760, 1430, 770, 260, 45, 6721, 60655, 250665, 628535, 1067865, 1299570, 1166945, 783720, 393855, 146025, 38500, 6630, 585, 5850271, 59885980, 285597890, 843288660, 1727996845, 2610132070, 3012643620
Offset: 1
Mike Domaratzki (mdomaratzki(AT)alumni.uwaterloo.ca), Nov 17 2001
Irregular triangle begins:
1;
1, 5, 10, 10, 5;
31, 230, 755, 1440, 1760, 1430, 770, 260, 45;
6721, ...
-
B[X_, 1] := X^5; B[X_, n_] := B[X, n] = X^5 (B[X+1, n-1] - B[X, n-1]) // Expand; row[1] = {1}; row[n_] := List @@ B[X, n] /. X -> 1; Array[row, 5] // Flatten (* Jean-François Alcover, Jul 08 2017 *)
Comments