cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-15 of 15 results.

A065748 Triangle of Gandhi polynomial coefficients.

Original entry on oeis.org

1, 1, 4, 6, 4, 15, 88, 220, 304, 250, 120, 28, 1025, 7308, 23234, 43420, 52880, 43880, 25088, 9680, 2340, 280, 209135, 1691024, 6237520, 13911400, 20956610, 22549360, 17853780, 10541440, 4639740, 1498280, 341000, 49920, 3640, 100482849
Offset: 1

Views

Author

Mike Domaratzki (mdomaratzki(AT)alumni.uwaterloo.ca), Nov 16 2001

Keywords

Comments

First column is A064625.

Examples

			Triangle starts
1;
1,4,6,4;
15,88,220,304,250,120,28;
1025,...
		

Crossrefs

Formula

Let B(X, n) = X^4 (B(X+1, n-1) - B(X, n-1)), B(X, 1) = X^4; then the (i, j)-th entry in the table is the coefficient of X^(5+j) in B(X, i).

A195505 Numerator of Sum_{k=1..n} H(k)/k^2, where H(k) is the k-th harmonic number.

Original entry on oeis.org

1, 11, 341, 2953, 388853, 403553, 142339079, 1163882707, 31983746689, 32452469713, 43725835522403, 44184852180503, 97954699428176291, 98731028315167091, 99421162547987123, 800313205356878959, 3953829021224881128767, 3973669953994085875967
Offset: 1

Views

Author

Franz Vrabec, Sep 19 2011

Keywords

Comments

Lim_{n-> infinity} (a(n)/A195506(n)) = 2*Zeta(3) [L. Euler].
Sum_{k = 1..n} H(k)/k^2 is an example of a multiple harmonic (star) sum. Euler's result Sum_{k = 1..inf} H(k)/k^2 = 2*zeta(3) was the first evaluation of a multiple zeta star value. - Peter Bala, Jan 31 2019

Examples

			a(2) = 11 because 1 + (1 + 1/2)/2^2 = 11/8.
The first few fractions are 1, 11/8, 341/216, 2953/1728, 388853/216000, 403553/216000, 142339079/74088000, 1163882707/592704000, ... = A195505/A195506. - _Petros Hadjicostas_, May 06 2020
		

Crossrefs

Cf. A001008, A002117, A036970, A195506 (denominators).

Programs

  • Mathematica
    s = 0; Table[s = s + HarmonicNumber[n]/n^2; Numerator[s], {n, 20}] (* T. D. Noe, Sep 20 2011 *)
  • PARI
    H(n) = sum(k=1, n, 1/k);
    a(n) = numerator(sum(k=1, n, H(k)/k^2)); \\ Michel Marcus, May 07 2020

Formula

From Peter Bala, Jan 31 2019: (Start)
Let S(n) = Sum_{k = 1..n} H(k)/k^2. Then
S(n) = 1 + (1 + 1/2^3)*(n-1)/(n+1) + (1/2^3 + 1/3^3)*(n-1)*(n-2)/((n+1)*(n+2)) + (1/3^3 + 1/4^3)*(n-1)*(n-2)*(n-3)/((n+1)*(n+2)*(n+3)) + ...
S(n)/n = 1 + (1/2^4 - 1)*(n-1)/(n+1) + (1/3^4 - 1/2^4)*(n-1)*(n-2)/((n+1)*(n+2)) + (1/4^4 - 1/3^4)*(n-1)*(n-2)*(n-3)/((n+1)*(n+2)*(n+3)) + ...
For odd n >= 3, 1/2*S((n-1)/2) = (n-1)/(n+1) + 1/2^3*(n-1)*(n-3)/((n+1)*(n+3)) + 1/3^3*(n-1)*(n-3)*(n-5)/((n+1)*(n+3)*(n+5)) + ....
Cf. A001008. See the Bala link in A036970. (End)

A058942 Triangle of coefficients of Gandhi polynomials.

Original entry on oeis.org

1, 1, 1, 2, 4, 2, 8, 22, 20, 6, 56, 184, 224, 120, 24, 608, 2248, 3272, 2352, 840, 120, 9440, 38080, 62768, 54336, 26208, 6720, 720, 198272, 856480, 1550528, 1531344, 896064, 312480, 60480, 5040, 5410688, 24719488, 48207488, 52633344, 35371776
Offset: 1

Views

Author

David W. Wilson, Jan 12 2001

Keywords

Comments

(1+x)^2 divides these polynomials for n > 2. - T. D. Noe, Jan 01 2008

Examples

			Triangle starts:
[1]
[1,      1]
[2,      4,      2]
[8,      22,     20,      6]
[56,     184,    224,     120,     24]
[608,    2248,   3272,    2352,    840,    120]
[9440,   38080,  62768,   54336,   26208,  6720,   720]
[198272, 856480, 1550528, 1531344, 896064, 312480, 60480, 5040]
		

Crossrefs

First column is A005439, as are row sums. See also A036970.
Cf. A084938.

Programs

  • Mathematica
    c[1][x_] = 1; c[n_][x_] :=  c[n][x] = (x+1)*((x+1)*c[n-1][x+1] - x*c[n-1][x]); Table[ CoefficientList[ c[n][x], x], {n, 9}] // Flatten (* Jean-François Alcover, Oct 09 2012 *)
  • Sage
    # uses[delehamdelta from A084938]
    def A058942_triangle(n) :
        A = [((i+1)//2)^2 for i in (1..n)]
        B = [((i+1)//2) for i in (1..n)]
        return delehamdelta(A, B)
    A058942_triangle(10) # Peter Luschny, Nov 09 2019

Formula

C_1(x) = 1; C_n(x) = (x+1)*((x+1)*C_n-1(x+1) - x*C_n-1(x)).
Triangle T(n, k), read by rows; given by [1, 1, 4, 4, 9, 9, 16, 16, 25, ...] DELTA [1, 1, 2, 2, 3, 3, 4, 4, 5, 5, ...] where DELTA is the operator defined in A084938. - Philippe Deléham, Feb 24 2005

A065747 Triangle of Gandhi polynomial coefficients.

Original entry on oeis.org

1, 1, 3, 3, 7, 30, 51, 42, 15, 145, 753, 1656, 1995, 1410, 567, 105, 6631, 39048, 100704, 149394, 140475, 86562, 34566, 8316, 945, 566641, 3656439, 10546413, 17972598, 20133921, 15581349, 8493555, 3246642, 841239, 135135, 10395
Offset: 1

Views

Author

Mike Domaratzki (mdomaratzki(AT)alumni.uwaterloo.ca), Nov 16 2001

Keywords

Comments

First column is A064624.

Examples

			Triangle starts
1;
1, 3, 3;
7, 30, 51, 42, 15;
145, 753, 1656, 1995, 1410, 567, 105;
6631 ...
		

Crossrefs

Formula

Let B(X, n) = X^3 (B(X+1, n-1) - B(X, n-1)), B(X, 1) = X^3; then the (i, j)-th entry is the table is the coefficient of X^(2+j) in B(X, i).

A065755 Triangle of Gandhi polynomial coefficients.

Original entry on oeis.org

1, 1, 5, 10, 10, 5, 31, 230, 755, 1440, 1760, 1430, 770, 260, 45, 6721, 60655, 250665, 628535, 1067865, 1299570, 1166945, 783720, 393855, 146025, 38500, 6630, 585, 5850271, 59885980, 285597890, 843288660, 1727996845, 2610132070, 3012643620
Offset: 1

Views

Author

Mike Domaratzki (mdomaratzki(AT)alumni.uwaterloo.ca), Nov 17 2001

Keywords

Comments

First column is A065756. Second column is A065757.

Examples

			Irregular triangle begins:
1;
1,      5,  10,   10,    5;
31,   230, 755, 1440, 1760, 1430, 770, 260, 45;
6721, ...
		

Crossrefs

Programs

  • Mathematica
    B[X_, 1] := X^5; B[X_, n_] := B[X, n] = X^5 (B[X+1, n-1] - B[X, n-1]) // Expand; row[1] = {1}; row[n_] := List @@ B[X, n] /. X -> 1; Array[row, 5] // Flatten (* Jean-François Alcover, Jul 08 2017 *)

Formula

Let B(X, n) = X^5 (B(X+1, n-1) - B(X, n-1)), B(X, 1) = X^5; then the (i, j)-th entry in the table is the coefficient of X^(4+j) in B(X, i).
Previous Showing 11-15 of 15 results.