cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 22 results. Next

A037275 Subsequence of record holders in A037274.

Original entry on oeis.org

1, 2, 3, 211, 3331113965338635107, 6161791591356884791277
Offset: 1

Views

Author

Keywords

Crossrefs

Extensions

De Geest's web site has many more terms.

A119603 Merging prime factors of n-th composite number.

Original entry on oeis.org

22, 23, 222, 33, 25, 223, 27, 35, 2222, 233, 225, 37, 211, 2223, 55, 213, 333, 227, 235, 22222, 311, 217, 57, 2233, 219, 313, 2225, 237, 2211, 335, 223, 22223, 77, 255, 317, 2213, 2333, 511, 2227, 319, 229, 2235, 231, 337, 222222, 513, 2311, 2217, 323, 257
Offset: 1

Views

Author

Zak Seidov, Jun 03 2006

Keywords

Comments

Rule "replace n-th composite number by concatenation of its prime factors" in A037271; composite numbers A002808.

Examples

			a(6)=223 because 6th composite number is 12: A002808(6)=12, then 12=2*2*3 and merging prime factors we get a(6)=223.
		

Crossrefs

Programs

  • Mathematica
    Reap[Do[If[!PrimeQ[n],Sow[FromDigits@Flatten[Table[IntegerDigits[ #[[1]]],{#[[2]]}]&/@FactorInteger@(n)]]],{n,2,115}]][[2,1]]

Formula

a(n) = A037276(A002808(n)). - Jason Yuen, Jun 28 2025

A331603 a(1) = 1; for n > 1, if a(n-1) is composite then a(n) is the concatenation of all the prime factors in order of a(n-1), otherwise a(n) is the smallest number not yet appearing in the sequence.

Original entry on oeis.org

1, 2, 3, 4, 22, 211, 5, 6, 23, 7, 8, 222, 2337, 31941, 33371313, 311123771, 7149317941, 22931219729, 112084656339, 3347911118189, 11613496501723, 97130517917327, 531832651281459, 3331113965338635107, 9, 33, 311, 10, 25, 55, 511, 773, 11, 12, 223, 13, 14, 27, 333, 3337, 4771, 13367, 15
Offset: 1

Views

Author

Scott R. Shannon, Jan 21 2020

Keywords

Comments

Assuming that all numbers when replaced with the concatenation of their prime factors will eventually reach a prime (see A037274), this sequence will contain all positive integers. a(158) = 49 which currently has no known 'home prime' in the iterative sequence of prime factor replacements; see A056938.

Examples

			a(5) = 22 as a(4) = 4 which has a factorization 4 = 2*2, so the concatenation of factors is '22'.
a(7) = 5 as a(6) = 211 which is prime, and 5 is the smallest number not yet appearing in the sequence.
a(14) = 31941 as a(13) = 2337 which has a factorization 2337 = 3*19*41, so the concatenation of factors is '31941'.
		

Crossrefs

Programs

A046424 Numbers requiring 4 steps to reach a prime under the prime factor concatenation procedure.

Original entry on oeis.org

10, 15, 16, 26, 27, 95, 118, 119, 121, 132, 145, 202, 204, 217, 286, 295, 302, 308, 354, 361, 370, 377, 400, 437, 451, 453, 455, 471, 474, 483, 506, 518, 526, 528, 530, 545, 567, 600, 610, 616, 635, 649, 650, 654, 655, 672, 699, 700, 718, 720, 722, 735, 745
Offset: 1

Views

Author

Patrick De Geest, Jun 15 1998

Keywords

Examples

			95 = 5*19 -> 519 = 3*173 -> 3173 = 19*167 -> 19167 = 3*6389 and 36389 is prime.
		

Crossrefs

Programs

  • Maple
    filter:= proc(n) local k,F,x,j;
      x:= n;
      for k from 1 to 4 do
        if isprime(x) then return false fi;
        F:= sort(ifactors(x)[2],(a,b) -> a[1] t[1] $ t[2], F);
        x:= F[1];
        for j from 2 to nops(F) do
          x:= x*10^(1+ilog10(F[j]))+F[j]
        od;
      od;
      isprime(x)
    end proc:
    select(filter, [$2..1000]);# Robert Israel, Jun 25 2019

Extensions

Edited by Charles R Greathouse IV, Apr 28 2010

A046428 Numbers requiring 8 steps to reach a prime under the prime factor concatenation procedure.

Original entry on oeis.org

78, 170, 315, 316, 544, 553, 579, 594, 626, 675, 726, 909, 940, 1056, 1088, 1090, 1107, 1118, 1178, 1210, 1260, 1349, 1382, 1482, 1580, 1585, 1616, 1617, 1620, 1645, 1647, 1746, 1824, 1872, 2033, 2145, 2188, 2195, 2201, 2211, 2225, 2250, 2338, 2349, 2365, 2378
Offset: 1

Views

Author

Patrick De Geest, Jun 15 1998

Keywords

Crossrefs

Programs

  • PARI
    \\ See Links section.

Extensions

More terms from Rémy Sigrist, May 19 2019

A046429 Numbers requiring 9 steps to reach a prime under the prime factor concatenation procedure.

Original entry on oeis.org

40, 44, 81, 224, 265, 395, 422, 462, 640, 698, 818, 972, 1010, 1032, 1070, 1089, 1174, 1206, 1280, 1336, 1446, 1518, 1520, 1528, 1581, 1662, 1728, 1814, 1816, 1849, 1852, 1853, 1856, 1892, 1927, 1932, 1960, 2032, 2060, 2061, 2090, 2098, 2202, 2212, 2249
Offset: 1

Views

Author

Patrick De Geest, Jun 15 1998

Keywords

Examples

			698 is in the sequence as 698 -> 2349 -> 333329 -> 2571297 -> 3857099 -> 31312323 -> 33771937101 -> 379437170413 -> 73124171910091 -> 374148203145623. Only after the ninth iteration we reach a prime. - _David A. Corneth_, Oct 15 2019
		

Crossrefs

Programs

  • PARI
    is(n, k) = if(isprime(n), return(0)); for(i = 1, k - 1, n = concatelements(primesvector(n)); if(isprime(n), return(0))); n = concatelements(primesvector(n)); isprime(n)
    concatelements(v) = my(s = ""); for(i = 1, #v, s = concat(s, v[i])); eval(s)
    primesvector(n) = my(f = factor(n), res = vector(vecsum(f[,2])), t = 0); for(i = 1, #f~, for(j = 1, f[i, 2], t++; res[t] = f[i, 1])); res \\ David A. Corneth, Oct 15 2019

Extensions

Extended and edited by Charles R Greathouse IV, Apr 28 2010

A225721 Starting with x = n, the number of iterations of x := 2x - 1 until x is prime, or -1 if no prime exists.

Original entry on oeis.org

-1, 0, 0, 1, 0, 1, 0, 2, 1, 1, 0, 1, 0, 2, 1, 1, 0, 3, 0, 6, 1, 1, 0, 1, 2, 2, 1, 2, 0, 1, 0, 8, 3, 1, 2, 1, 0, 2, 5, 1, 0, 1, 0, 2, 1, 2, 0, 583, 1, 2, 1, 1, 0, 1, 1, 4, 1, 2, 0, 5, 0, 4, 7, 1, 2, 1, 0, 2, 1, 1, 0, 3, 0, 2, 1, 1, 4, 3, 0, 2, 3, 1, 0, 1, 2, 4
Offset: 1

Views

Author

Keywords

Comments

This appears to be a shifted variant of A040076. - R. J. Mathar, May 28 2013
If n is prime, then a(n) = 0. If the sequence never reaches a prime number (for n = 1) or the prime number has more than 1000 digits, -1 is used instead. There are 22 such numbers for n < 10000.

Examples

			For a(20), the trajectory is 20->39->77->153->305->609->1217, a prime number. That required 6 steps, so a(20)=6.
		

Crossrefs

Cf. A050921 (primes obtained).
Cf. A040081, A038699, A050412, A052333, A046069 (related to the Riesel problem).
Cf. A000668, A000043, A065341 (Mersenne primes), A000079 (powers of 2).
Cf. A007770 (happy numbers), A031177 (unhappy numbers).
Cf. A037274 (home primes), A037271 (steps), A037272, A037272.

Programs

  • R
    y=as.bigz(rep(0,500)); ys=rep(0,500);
    for(i in 1:500) { n=as.bigz(i); k=0;
        while(isprime(n)==0 & ndig(n)<1000 & k<5000) { k=k+1; n=2*n-1 }
        if(ndig(n)>=1000 | k>=5000) { ys[i]=-1; y[i]=-1;
        } else {ys[i]=k; y[i]=n; }
    }

A046422 Numbers requiring 2 steps to reach a prime under the prime factor concatenation procedure.

Original entry on oeis.org

4, 9, 24, 30, 32, 36, 38, 42, 50, 55, 57, 60, 68, 74, 75, 88, 92, 94, 99, 102, 106, 108, 110, 122, 134, 140, 155, 158, 174, 194, 206, 209, 215, 231, 244, 254, 272, 280, 287, 298, 299, 306, 314, 323, 332, 334, 346, 351, 362, 365, 371, 374, 398, 413, 415, 417
Offset: 1

Views

Author

Patrick De Geest, Jun 15 1998

Keywords

Examples

			24 = 2*2*2*3, 2223 = 3*3*13*19, 331319 is prime.
		

Crossrefs

Extensions

Edited by Charles R Greathouse IV, Apr 28 2010

A046423 Numbers requiring 3 steps to reach a prime under the prime factor concatenation procedure.

Original entry on oeis.org

25, 35, 56, 62, 69, 72, 76, 85, 90, 100, 114, 125, 138, 143, 152, 189, 213, 221, 238, 250, 259, 260, 270, 275, 278, 303, 318, 333, 364, 366, 369, 390, 403, 441, 448, 454, 469, 470, 473, 485, 507, 512, 519, 522, 529, 559, 560, 572, 588, 591, 624, 629, 648
Offset: 1

Views

Author

Patrick De Geest, Jun 15 1998

Keywords

Examples

			69 = 3*23 -> 323 = 17*19 -> 1719 = 3*3*191 and 33191 is prime.
		

Crossrefs

Extensions

Edited by Charles R Greathouse IV, Apr 28 2010

A046425 Numbers requiring 5 steps to reach a prime under the prime factor concatenation procedure.

Original entry on oeis.org

14, 34, 147, 164, 183, 214, 216, 230, 236, 248, 252, 276, 285, 309, 324, 335, 404, 405, 444, 482, 484, 486, 508, 520, 527, 540, 550, 570, 580, 633, 636, 638, 658, 689, 704, 730, 738, 802, 814, 852, 915, 935, 954, 959, 960, 981, 996, 1004, 1037, 1046, 1058
Offset: 0

Views

Author

Patrick De Geest, Jun 15 1998

Keywords

Examples

			14 = 2*7 -> 27 = 3*3*3 -> 333 = 3*3*37 -> 3337 = 47*71 -> 4771 = 13*367 and 13367 is prime.
		

Crossrefs

Previous Showing 11-20 of 22 results. Next