cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A140796 a(n)=a(n-1)+6a(n-2), n>2.

Original entry on oeis.org

1, 5, 14, 44, 128, 392, 1160, 3512, 10472, 31544, 94376, 283640, 849896, 2551736, 7651112, 22961528, 68868200, 206637368, 619846568, 1859670776, 5578750184, 16736774840, 50209275944, 150629924984, 451885580648, 1355665130552
Offset: 0

Views

Author

Paul Curtz, Jul 15 2008

Keywords

Comments

The binomial transform is A037481.
The recurrence of the definition is also satisfied by A087451, A102901 and A140725.

Crossrefs

Programs

  • Mathematica
    Join[{1},LinearRecurrence[{1,6},{5,14},30]] (* Harvey P. Dale, Nov 20 2011 *)

Formula

a(n+1)-3a(n) = (-1)^n*A000079(n-1), n>0.
d(n+1)-3d(n) = (-1)^(n+1)*A000079(n-1), n>0, where d(n) is the sequence of pair sums d(n)= a(n)+a(n+1)=6, 19, 58, 172,...
O.g.f.: (1+x)(3x+1)/((2x+1)(1-3x)). - R. J. Mathar, Jul 29 2008
a(n) = (-1)^(n+1)*2^n/10+8*3^n/5, n>0. - R. J. Mathar, Jul 29 2008
a(n) = A140725(n)+A140725(n+1). - Philippe Deléham, Nov 17 2013

Extensions

Edited and extended by R. J. Mathar, Jul 29 2008

A341910 Lexicographically earliest sequence of distinct nonnegative integers such that for any n >= 0, the number of runs in the binary expansion of n equals the number of ones in the binary expansion of a(n).

Original entry on oeis.org

0, 1, 3, 2, 5, 7, 6, 4, 9, 11, 15, 13, 10, 14, 12, 8, 17, 19, 23, 21, 27, 31, 29, 22, 18, 25, 30, 26, 20, 28, 24, 16, 33, 35, 39, 37, 43, 47, 45, 38, 46, 55, 63, 59, 51, 61, 53, 41, 34, 42, 54, 44, 57, 62, 58, 49, 36, 50, 60, 52, 40, 56, 48, 32, 65, 67, 71, 69
Offset: 0

Views

Author

Rémy Sigrist, Feb 23 2021

Keywords

Comments

This sequence is a permutation of the nonnegative integers with inverse A341911.
Apparently, A037481 corresponds to the fixed points of this sequence.

Examples

			The first terms, in decimal and in binary, are:
  n   a(n)  bin(n)   bin(a(n))
  --  ----  -------  ---------
   0     0        0          0
   1     1        1          1
   2     3       10         11
   3     2       11         10
   4     5      100        101
   5     7      101        111
   6     6      110        110
   7     4      111        100
   8     9     1000       1001
   9    11     1001       1011
  10    15     1010       1111
		

Crossrefs

Programs

  • Mathematica
    Block[{a = {0}, k}, Do[k = 1; While[Nand[FreeQ[a, k], DigitCount[k, 2, 1] == #], k++] &@ Length[Split@ IntegerDigits[i, 2]]; AppendTo[a, k], {i, 67}]; a] (* Michael De Vlieger, Feb 24 2021 *)
  • PARI
    See Links section.

Formula

A005811(n) = A000120(a(n)).
a(n) < 2^k for any n < 2^k.

A362364 a(n) is the product of the first n primes that are coprime to a(n-1); a(0) = 1.

Original entry on oeis.org

1, 2, 15, 154, 3315, 67298, 2980185, 102091066, 6022953885, 319238763382, 24615812527995, 1654614510608906, 161405882746063215, 14284287070086685498, 1679105398207295625645, 166597640098421012963174, 24096841569672899523631395, 2989927846846361919650083778, 499069685749495422033929821845
Offset: 0

Views

Author

Robert Israel, Apr 18 2023

Keywords

Comments

Lexicographically first sequence of squarefree numbers such that A001222(a(n)) = n and each term is coprime to the next.

Examples

			a(0) = 1.
a(1) = 2 is the least prime coprime to a(0).
a(2) = 3*5 is the product of the two least primes coprime to a(1).
a(3) = 2*7*11 is the product of the three least primes coprime to a(2).
a(4) = 3*5*13*17 = 3315 is the product of the four least primes coprime to a(3).
		

Crossrefs

Cf. A001222.
See the formula section for the relationships with A002110, A019565, A037481, A100112, A117214.

Programs

  • Maple
    f:= proc(n) local i;
       if n::odd then 2 * mul(ithprime(4*i)*ithprime(4*i+1),i=1..(n-1)/2)
       else mul(ithprime(4*i-2)*ithprime(4*i-1),i=1..(n/2))
       fi
    end proc:
    map(f, [$0..20]);
  • Python
    from math import prod
    from sympy import prime
    def A362364(n): return prod(prime(i)*prime(i+1) for i in range(2+((n&1)<<1),(n<<1)-1,4))<<(n&1) # Chai Wah Wu, Apr 20 2023

Formula

If n is even, a(n) = Product_{i=1..n/2} prime(4*i-2)*prime(4*i-1).
If n is odd, a(n) = 2 * Product_{i=1..(n-1)/2} prime(4*i)*prime(4*i+1).
From Peter Munn, Apr 21 2023: (Start)
a(0) = 1, for n >= 1, a(n) = A002110(2n-1)/a(n-1).
a(n) = A019565(A037481(n)).
For n >= 1, a(n-1) = A117214(A100112(a(n))).
(End)

A363773 a(n) = (4^(n+1) + (-1)^n + 5)/10.

Original entry on oeis.org

1, 2, 7, 26, 103, 410, 1639, 6554, 26215, 104858, 419431, 1677722, 6710887, 26843546, 107374183, 429496730, 1717986919, 6871947674, 27487790695, 109951162778, 439804651111, 1759218604442, 7036874417767, 28147497671066, 112589990684263, 450359962737050
Offset: 0

Views

Author

Keywords

Comments

a(n) is a part of the numerator of the approximate solutions x(n) = (Pi/2)*(1+5/((4^(n+1)-(-1)^(n+1)))) = a(n)*Pi/A015521(n+1) of D_d(exp(-i*x(n))) = Cl_d(x(n)+Pi) = 0, where D_d(exp(-i*x(n))) is the Bloch-Wigner-Ramakrishnan polylogarithm function and Cl_d(x(n)+Pi) is the Clausen function for odd d >= 3 and n >= 0.

Crossrefs

Programs

Formula

a(n) = 1 + A037481(n).
G.f.: (1-2*x-2*x^2)/((x-1)*(4*x-1)*(x+1)).
E.g.f.: (4*e^(4*x) + e^-x + 5*e^x)/10.
Previous Showing 11-14 of 14 results.