A117207
Number triangle read by rows: T(n,k) = Sum_{j=0..n-k} C(n+j,j+k)*C(n-j,k).
Original entry on oeis.org
1, 3, 1, 10, 7, 1, 35, 31, 13, 1, 126, 121, 81, 21, 1, 462, 456, 381, 181, 31, 1, 1716, 1709, 1583, 1058, 358, 43, 1, 6435, 6427, 6231, 5055, 2605, 645, 57, 1, 24310, 24301, 24013, 21661, 14605, 5785, 1081, 73, 1, 92378, 92368, 91963, 87643, 70003, 38251, 11791
Offset: 0
Triangle begins:
1,
3, 1,
10, 7, 1,
35, 31, 13, 1,
126, 121, 81, 21, 1,
462, 456, 381, 181, 31, 1,
1716, 1709, 1583, 1058, 358, 43, 1
-
Table[Sum[Binomial[n+j,j+k]Binomial[n-j,k],{j,0,n-k}],{n,0,10},{k,0,n}]//Flatten (* Harvey P. Dale, Apr 23 2016 *)
-
T(n,k)=sum(j=0,n-k, binomial(n+j,j+k)*binomial(n-j,k))
T(n,k)=binomial(2*n+1,n+1)-(n+1)*sum(j=1,k, binomial(n,j-1)^2/j)
A117207(k)=my(n=sqrtint(2*k-sqrtint(2*k))); T(n,k-n*(n+1)/2) \\ M. F. Hasler, Jan 25 2012
A119574
a(n) = binomial(2*n,n)*(n+2)^2/(n+1).
Original entry on oeis.org
4, 9, 32, 125, 504, 2058, 8448, 34749, 143000, 588302, 2418624, 9934834, 40770352, 167152500, 684656640, 2801810205, 11455885080, 46801769190, 191055480000, 779363066790, 3177034283280, 12942655253580, 52693956656640, 214412258531250, 871975203591024
Offset: 0
-
[seq (binomial(2*n,n)*(n+2)^2/(n+1),n=0..25)];
-
Table[Binomial[2n,n] (n+2)^2/(n+1),{n,0,30}] (* Harvey P. Dale, Jun 02 2024 *)
A176564
Triangle T(n,m)= binomial(2*n,m) + binomial(2*n,n-m) -binomial(2*n,n) read by rows.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, -6, -14, -6, 1, 1, -32, -87, -87, -32, 1, 1, -120, -363, -484, -363, -120, 1, 1, -415, -1339, -2067, -2067, -1339, -415, 1, 1, -1414, -4742, -7942, -9230, -7942, -4742, -1414, 1, 1, -4844, -16643, -29240, -36992, -36992, -29240
Offset: 0
The triangle starts in row n=0 with columns 0<=m<=n as:
1;
1, 1;
1, 2, 1;
1, 1, 1, 1;
1, -6, -14, -6, 1;
1, -32, -87, -87, -32, 1;
1, -120, -363, -484, -363, -120, 1;
1, -415, -1339, -2067, -2067, -1339, -415, 1;
1, -1414, -4742, -7942, -9230, -7942, -4742, -1414, 1;
1, -4844, -16643, -29240, -36992, -36992, -29240, -16643, -4844, 1;
1, -16776, -58596, -106096, -141151, -153748, -141151, -106096, -58596, -16776, 1;
-
A176564 := proc(n,m) binomial(2*n,m)+binomial(2*n,n-m) -binomial(2*n,n) ; end proc:
-
t[n_, m_] = Binomial[2*n, m] + Binomial[2*n, n - m] - (Binomial[2*n, 0] + Binomial[2*n, n]) + 1;
Table[Table[t[n, m], {m, 0, n}], {n, 0, 10}];
Flatten[%]
A349147
Triangle T(n,m) read by rows: the sum of runs of all sequences arranging n objects of one type and m objects of another type.
Original entry on oeis.org
1, 1, 4, 1, 7, 18, 1, 10, 34, 80, 1, 13, 55, 155, 350, 1, 16, 81, 266, 686, 1512, 1, 19, 112, 420, 1218, 2982, 6468, 1, 22, 148, 624, 2010, 5412, 12804, 27456, 1, 25, 189, 885, 3135, 9207, 23595, 54483, 115830, 1, 28, 235, 1210, 4675, 14872, 41041, 101530, 230230, 486200, 1, 31
Offset: 0
The triangle starts
1,
1, 4,
1, 7, 18,
1, 10, 34, 80,
1, 13, 55, 155, 350,
1, 16, 81, 266, 686, 1512,
1, 19, 112, 420, 1218, 2982, 6468,
1, 22, 148, 624, 2010, 5412, 12804, 27456,
1, 25, 189, 885, 3135, 9207, 23595, 54483, 115830,
1, 28, 235, 1210, 4675, 14872, 41041, 101530, 230230, 486200,
1, 31, 286, 1606, 6721, 23023, 68068, 179608, 432718, 967538, 2032316
For n=m=1 the sequences are ab (2 runs) and ba (2 runs), so T(1,1)=2+2=4.
For n=1, m=2 the sequences are aab (2 runs), aba (3 runs), baa (2 runs), so T(1,2)=2+3+2=7.
For n=m=2 the sequences are aabb (2 runs), abab (4 runs), abba (3 runs), baab (3 runs), baba (4 runs), bbaa (2 runs), so T(2,2) = 2+4+3+3+4+2=18.
A178343
Triangle T(n,m)= binomial(n, m)/Beta(m + 1, n - m + 1) read by rows.
Original entry on oeis.org
1, 2, 2, 3, 12, 3, 4, 36, 36, 4, 5, 80, 180, 80, 5, 6, 150, 600, 600, 150, 6, 7, 252, 1575, 2800, 1575, 252, 7, 8, 392, 3528, 9800, 9800, 3528, 392, 8, 9, 576, 7056, 28224, 44100, 28224, 7056, 576, 9, 10, 810, 12960, 70560, 158760, 158760, 70560, 12960, 810, 10
Offset: 0
1;
2, 2;
3, 12, 3;
4, 36, 36, 4;
5, 80, 180, 80, 5;
6, 150, 600, 600, 150, 6;
7, 252, 1575, 2800, 1575, 252, 7;
8, 392, 3528, 9800, 9800, 3528, 392, 8;
9, 576, 7056, 28224, 44100, 28224, 7056, 576, 9;
10, 810, 12960, 70560, 158760, 158760, 70560, 12960, 810, 10;
11, 1100, 22275, 158400, 485100, 698544, 485100, 158400, 22275, 1100, 11;
-
Flatten[Table[Table[Binomial[n, m]/Beta[m + 1, n - m + 1], {m, 0, n}], {n, 0, 10}]]
Edited by the Assoc. Eds. of the OEIS - Jun 27 2010
Comments