cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-43 of 43 results.

A161183 Terms which occur at least twice in A161182.

Original entry on oeis.org

1, 9, 16, 25, 53, 78, 82, 89, 115, 120, 130, 152, 161, 178, 196, 224, 233, 235, 250, 256, 265, 286, 291, 300, 301, 314, 315, 325, 347, 357, 360, 368, 381, 391, 397, 419, 428, 430, 456, 468, 479, 483, 484, 494, 495, 512, 528, 570, 577, 589, 591, 608, 610, 620
Offset: 1

Views

Author

Daniel Tisdale, Jun 05 2009

Keywords

Comments

A161182 is not monotonic, so some terms (like 89) listed here are not direct neighbors in A161182. - R. J. Mathar, Jun 22 2009

Crossrefs

Programs

  • Maple
    A038107 := proc(n) numtheory[pi]( n^2) ; end: A078435 := proc(n) n^2-A038107(n) ; end: A161182 := proc(n) A078435(n)-A078435(n-1) ; end: L := [] ; for n from 1 to 1200 do L := [op(L), A161182(n)] ; od: read("transforms3") ; L := sort(L) ; L := LISTDUPL(L,0) ; # R. J. Mathar, Jun 22 2009
  • Mathematica
    f[n_] := 2n - 1 - PrimePi[n^2] + PrimePi[(n-1)^2];
    Select[Split[Array[f, 1000]//Sort], Length[#] >= 2&][[All, 1]]
    (* Jean-François Alcover, Mar 07 2023 *)

Extensions

Edited by N. J. A. Sloane, Jun 07 2009
Missing numbers added by R. J. Mathar, Jun 22 2009

A182564 Number of primes < Fibonacci(n).

Original entry on oeis.org

0, 0, 0, 0, 1, 2, 4, 5, 8, 11, 16, 23, 34, 50, 74, 111, 166, 250, 376, 574, 871, 1329, 2033, 3120, 4794, 7396, 11425, 17688, 27426, 42612, 66317, 103298, 161207, 251757, 393790, 616645, 966507, 1516410, 2381429, 3743010, 5888201, 9269519, 14604028, 23023555, 36322186, 57337078, 90565070, 143130478
Offset: 0

Views

Author

Alex Ratushnyak, May 05 2012

Keywords

Examples

			Fibonacci(7)=13, there are 5 primes less than 13, so a(7)=5.
		

Crossrefs

Programs

  • Mathematica
    Table[If[PrimeQ[Fibonacci[n]],PrimePi[Fibonacci[n]-1],PrimePi[ Fibonacci[ n]]],{n,0,50}] (* Harvey P. Dale, Feb 12 2022 *)
  • PARI
    a(n) = primepi(fibonacci(n)-1) \\ Michel Marcus, May 13 2013

A342695 a(n) is the number of primes in an n X n square array that do not appear on its border, with the elements of the square array being the numbers from 1..n^2, listed in increasing order by rows.

Original entry on oeis.org

0, 0, 1, 2, 4, 4, 8, 10, 14, 15, 21, 21, 27, 31, 36, 42, 48, 46, 58, 61, 68, 73, 83, 83, 96, 100, 110, 114, 127, 123, 144, 146, 157, 165, 175, 179, 201, 201, 212, 221, 241, 235, 258, 265, 275, 282, 303, 301, 328, 330, 346, 351, 381, 377, 403, 406, 427, 433, 455, 452, 486, 493
Offset: 1

Views

Author

Wesley Ivan Hurt, May 18 2021

Keywords

Examples

			                                                      [1   2  3  4  5]
                                      [1   2  3  4]   [6   7  8  9 10]
                            [1 2 3]   [5   6  7  8]   [11 12 13 14 15]
                   [1 2]    [4 5 6]   [9  10 11 12]   [16 17 18 19 20]
           [1]     [3 4]    [7 8 9]   [13 14 15 16]   [21 22 23 24 25]
------------------------------------------------------------------------
  n         1        2         3            4                 5
------------------------------------------------------------------------
  a(n)      0        0         1            2                 4
------------------------------------------------------------------------
  primes   {}       {}        {5}        {7,11}         {7,13,17,19}
------------------------------------------------------------------------
		

Crossrefs

Cf. A000720 (pi), A038107, A221490, A344316 (on border), A344349.

Programs

  • Mathematica
    Table[PrimePi[n*(n - 1)] - PrimePi[n] - Sum[PrimePi[n*k + 1] - PrimePi[n*k], {k, n - 2}], {n, 100}]

Formula

a(n) = pi(n*(n-1)) - pi(n) - Sum_{k=1..n-2} (pi(n*k+1) - pi(n*k)).
Previous Showing 41-43 of 43 results.