cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 110 results. Next

A098639 Consider the family of directed multigraphs enriched by the species of odd sets. Sequence gives number of those multigraphs with n labeled arcs.

Original entry on oeis.org

1, 1, 6, 69, 1230, 30663, 1005692, 41571127, 2099861244, 126607647073, 8945129371976, 729628409684925, 67868881258920424, 7125522244948969319, 837004398237510194704, 109173596976047915341823, 15708090522743045757716496, 2478722722731315203268137729
Offset: 0

Views

Author

N. J. A. Sloane, Oct 26 2004

Keywords

References

  • G. Paquin, Dénombrement de multigraphes enrichis, Mémoire, Math. Dept., Univ. Québec à Montréal, 2004.

Crossrefs

Programs

  • PARI
    \\ EnrichedGdSeq defined in A098623.
    EnrichedGdSeq(sinh(x + O(x*x^20))) \\ Andrew Howroyd, Jan 12 2021

Formula

E.g.f.: B(sinh(x)) where B(x) is the e.g.f. of A014505. - Andrew Howroyd, Jan 12 2021

Extensions

Terms a(12) and beyond from Andrew Howroyd, Jan 12 2021

A099692 Consider the family of multigraphs enriched by the species of directed sets. Sequence gives number of those multigraphs with n labeled edges.

Original entry on oeis.org

1, 1, 4, 23, 220, 3016, 55011, 1265824, 35496711, 1183686987, 46072834777, 2062557088117, 104926356851165, 6004962409831577, 383331023991407286, 27094756978689827593, 2107021273883402908850, 179261681391054814324774, 16602830645109035036038335
Offset: 0

Views

Author

N. J. A. Sloane, Oct 26 2004

Keywords

References

  • G. Paquin, Dénombrement de multigraphes enrichis, Mémoire, Math. Dept., Univ. Québec à Montréal, 2004.

Crossrefs

Programs

  • PARI
    \\ R(n) is e.g.f. of 1,1,2,2,2,2,...; EnrichedGnSeq defined in A098620.
    R(n)={2*exp(x + O(x*x^n)) - x - 1}
    EnrichedGnSeq(R(20)) \\ Andrew Howroyd, Jan 12 2021

Formula

E.g.f.: B(2*exp(x) - x - 2) where B(x) is the e.g.f. of A014500. - Andrew Howroyd, Jan 12 2021

Extensions

Terms a(11) and beyond from Andrew Howroyd, Jan 12 2021

A099693 Consider the family of multigraphs enriched by the species of directed sets. Sequence gives number of those multigraphs with n loops and edges.

Original entry on oeis.org

1, 2, 11, 89, 1063, 17099, 352700, 8987170, 275303298, 9930027149, 414883314611
Offset: 0

Views

Author

N. J. A. Sloane, Oct 26 2004

Keywords

References

  • G. Paquin, Dénombrement de multigraphes enrichis, Mémoire, Math. Dept., Univ. Québec à Montréal, 2004.

A099694 Consider the family of directed multigraphs enriched by the species of directed sets. Sequence gives number of those multigraphs with n labeled loops and arcs.

Original entry on oeis.org

1, 2, 17, 244, 5283, 156092, 5954547, 282221828, 16159327961, 1094056231572, 86116276633357, 7773114989571400, 795480206815177651, 91417037615848058160, 11701283925663217478843, 1656436690705751478232180, 257730676653629520748175377, 43837005194184348815823808500
Offset: 0

Views

Author

N. J. A. Sloane, Oct 26 2004

Keywords

References

  • G. Paquin, Dénombrement de multigraphes enrichis, Mémoire, Math. Dept., Univ. Québec à Montréal, 2004.

Crossrefs

Programs

  • PARI
    \\ R(n) is e.g.f. of 1, 1, 2, 2, 2, ...; EnrichedGdlSeq defined in A098622.
    R(n)={2*exp(x + O(x*x^n)) - x - 1}
    EnrichedGdlSeq(R(20)) \\ Andrew Howroyd, Jan 12 2021

Formula

E.g.f.: B(2*exp(x) - x - 2) where B(x) is the e.g.f. of A014507. - Andrew Howroyd, Jan 12 2021

Extensions

Terms a(11) and beyond from Andrew Howroyd, Jan 12 2021

A099695 Consider the family of directed multigraphs enriched by the species of directed sets. Sequence gives number of those multigraphs with n labeled arcs.

Original entry on oeis.org

1, 1, 8, 106, 2144, 59844, 2173450, 98648246, 5433864078, 355229741266, 27080154837658, 2373310690810690, 236327564463489838, 26475199136060717618, 3308794737926514931894, 457980967372496137472590, 69761664006643652403884218, 11629282648335699139979015070
Offset: 0

Views

Author

N. J. A. Sloane, Oct 26 2004

Keywords

References

  • G. Paquin, Dénombrement de multigraphes enrichis, Mémoire, Math. Dept., Univ. Québec à Montréal, 2004.

Crossrefs

Programs

  • PARI
    \\ R(n) is e.g.f. of 1, 1, 2, 2, 2, ...; EnrichedGdSeq defined in A098623.
    R(n)={2*exp(x + O(x*x^n)) - x - 1}
    EnrichedGdSeq(R(20)) \\ Andrew Howroyd, Jan 12 2021

Formula

E.g.f.: B(2*exp(x) - x - 2) where B(x) is the e.g.f. of A014505. - Andrew Howroyd, Jan 12 2021

Extensions

Terms a(11) and beyond from Andrew Howroyd, Jan 12 2021

A099696 Consider the family of multigraphs enriched by the species of involutions. Sequence gives number of those multigraphs with n labeled edges.

Original entry on oeis.org

1, 1, 4, 25, 244, 3380, 62133, 1440382, 40673705, 1364815169, 53415511305, 2402797049419, 122751622204827, 7051227704802797, 451598420376965588, 32013004761567761223, 2495936511077175475140, 212840593118800653411004, 19753575434503894710824531
Offset: 0

Views

Author

N. J. A. Sloane, Oct 26 2004

Keywords

References

  • G. Paquin, Dénombrement de multigraphes enrichis, Mémoire, Math. Dept., Univ. Québec à Montréal, 2004.

Crossrefs

Programs

  • PARI
    \\ R(n) is A000085 as e.g.f.; EnrichedGnSeq defined in A098620.
    R(n)={exp(x+x^2/2 + O(x*x^n))}
    EnrichedGnSeq(R(20)) \\ Andrew Howroyd, Jan 12 2021

Formula

E.g.f.: B(R(x)) where B(x) is the e.g.f. of A014500 and 1 + R(x) is the e.g.f. of A000085. - Andrew Howroyd, Jan 12 2021

Extensions

Terms a(11) and beyond from Andrew Howroyd, Jan 12 2021

A099697 Consider the family of multigraphs enriched by the species of involutions. Sequence gives number of those multigraphs with n loops and edges.

Original entry on oeis.org

1, 2, 11, 93, 1135, 18567, 387976, 9991794, 308837454, 11225560583, 472141867849
Offset: 0

Views

Author

N. J. A. Sloane, Oct 26 2004

Keywords

References

  • G. Paquin, Dénombrement de multigraphes enrichis, Mémoire, Math. Dept., Univ. Québec à Montréal, 2004.

A099698 Consider the family of directed multigraphs enriched by the species of involutions. Sequence gives number of those multigraphs with n labeled loops and arcs.

Original entry on oeis.org

1, 2, 17, 248, 5403, 160420, 6142567, 291996934, 16759322733, 1136940595762, 89641455771637, 8102778995663368, 830222723124364047, 95509354134959796556, 12236166882713532940611, 1733521075683722202738222, 269910543278748394820341769, 45936441912756036235229989058
Offset: 0

Views

Author

N. J. A. Sloane, Jun 25 2017

Keywords

Crossrefs

Programs

  • PARI
    \\ R(n) is A000085 as e.g.f.; EnrichedGdlSeq defined in A098622.
    R(n)={exp(x+x^2/2 + O(x*x^n))}
    EnrichedGdlSeq(R(20)) \\ Andrew Howroyd, Jan 12 2021

Formula

E.g.f.: B(R(x)) where B(x) is the e.g.f. of A014507 and 1 + R(x) is the e.g.f. of A000085. - Andrew Howroyd, Jan 12 2021

Extensions

Dead sequence restored, corrected and extended by Andrew Howroyd, Jan 12 2021

A099699 Consider the family of directed multigraphs enriched by the species of involutions. Sequence gives number of those multigraphs with n labeled arcs.

Original entry on oeis.org

1, 1, 8, 108, 2200, 61708, 2249268, 102377404, 5651999688, 370171228504, 28262385542832, 2480108374814480, 247231765611893504, 27722619251007202720, 3467475213036160205984, 480277499859342401636704, 73202023124111697153718080, 12209186681659842887207280448
Offset: 0

Views

Author

N. J. A. Sloane, Oct 26 2004

Keywords

References

  • G. Paquin, Dénombrement de multigraphes enrichis, Mémoire, Math. Dept., Univ. Québec à Montréal, 2004.

Crossrefs

Programs

  • PARI
    \\ R(n) is A000085 as e.g.f.; EnrichedGdSeq defined in A098623.
    R(n)={exp(x+x^2/2 + O(x*x^n))}
    EnrichedGdSeq(R(20)) \\ Andrew Howroyd, Jan 12 2021

Formula

E.g.f.: B(R(x)) where B(x) is the e.g.f. of A014505 and 1 + R(x) is the e.g.f. of A000085. - Andrew Howroyd, Jan 12 2021

Extensions

Terms a(11) and beyond from Andrew Howroyd, Jan 12 2021

A365974 Expansion of e.g.f. exp( Sum_{k>=0} x^(5*k+3) / (5*k+3) ).

Original entry on oeis.org

1, 0, 0, 2, 0, 0, 40, 0, 5040, 2240, 0, 1663200, 246400, 479001600, 605404800, 44844800, 699941088000, 274450176000, 355699625881600, 836634972096000, 156436600320000, 1437392253237248000, 1021561084051200000, 1124111547465274368000
Offset: 0

Views

Author

Seiichi Manyama, Sep 23 2023

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(sum(k=0, N\5, x^(5*k+3)/(5*k+3)))))

Formula

a(0) = 1; a(n) = (n-1)! * Sum_{k=0..floor((n-3)/5)} a(n-5*k-3)/(n-5*k-3)!.
Previous Showing 31-40 of 110 results. Next