cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-26 of 26 results.

A038487 Sums of two distinct powers of 9.

Original entry on oeis.org

10, 82, 90, 730, 738, 810, 6562, 6570, 6642, 7290, 59050, 59058, 59130, 59778, 65610, 531442, 531450, 531522, 532170, 538002, 590490, 4782970, 4782978, 4783050, 4783698, 4789530, 4842018, 5314410, 43046722, 43046730, 43046802, 43047450, 43053282
Offset: 1

Views

Author

Keywords

Crossrefs

Base 9 interpretation of A038444.

Programs

  • Maple
    N:= 10^10: # to get all terms <= N
    {seq(seq(9^a+9^b,b=0..a-1),a=1..floor(log[9](N)))}; # Robert Israel, Aug 31 2014
  • Mathematica
    Total/@Subsets[9^Range[0,10],{2}]//Union (* Harvey P. Dale, Aug 25 2023 *)
  • PARI
    for(a=0,19,for(b=0,a-1,print1(9^a+9^b,","))) \\ M. F. Hasler, Aug 31 2014
    
  • Python
    from math import isqrt
    def A038487(n): return 9**(m:=isqrt(n<<3)+1>>1)+9**(n-1-(m*(m-1)>>1)) # Chai Wah Wu, Apr 05 2025

Formula

a(n)=9^A002024(n)+9^A002262(n). - M. F. Hasler, Aug 31 2014

Extensions

More terms from Vincenzo Librandi, Aug 06 2009
Corrected by Harvey P. Dale, Aug 31 2014
Offset changed from 0 to 1 by M. F. Hasler, Aug 31 2014

A038492 Sums of 2 distinct powers of 12.

Original entry on oeis.org

13, 145, 156, 1729, 1740, 1872, 20737, 20748, 20880, 22464, 248833, 248844, 248976, 250560, 269568, 2985985, 2985996, 2986128, 2987712, 3006720, 3234816, 35831809, 35831820, 35831952, 35833536, 35852544, 36080640, 38817792, 429981697, 429981708, 429981840, 429983424, 430002432, 430230528
Offset: 1

Views

Author

Keywords

Crossrefs

Base-12 interpretation of A038444.

Programs

  • Mathematica
    Take[Union[Plus@@@Subsets[12^Range[0,20],{2}]],50] (* Harvey P. Dale, Dec 16 2010 *)
  • Python
    from math import isqrt
    def A038492(n): return 12**(m:=isqrt(n<<3)+1>>1)+12**(n-1-(m*(m-1)>>1)) # Chai Wah Wu, Apr 04 2025

Extensions

More terms from Vincenzo Librandi, Aug 06 2009
Offset corrected by Amiram Eldar, Jul 14 2022

A038490 Sums of 2 distinct powers of 11.

Original entry on oeis.org

12, 122, 132, 1332, 1342, 1452, 14642, 14652, 14762, 15972, 161052, 161062, 161172, 162382, 175692, 1771562, 1771572, 1771682, 1772892, 1786202, 1932612, 19487172, 19487182, 19487292, 19488502, 19501812, 19648222, 21258732, 214358882, 214358892, 214359002, 214360212, 214373522, 214519932, 216130442
Offset: 1

Views

Author

Keywords

Crossrefs

Base 11 interpretation of A038444.

Programs

  • Maple
    seq(seq(11^i+11^j,i=0..j-1),j=1..10); # Robert Israel, Jun 21 2018
  • Mathematica
    Take[Union[Plus@@@Subsets[11^Range[0,20],{2}]],50] (* Harvey P. Dale, Dec 16 2010 *)
  • Python
    from math import isqrt
    def A038490(n): return 11**(m:=isqrt(n<<3)+1>>1)+11**(n-1-(m*(m-1)>>1)) # Chai Wah Wu, Apr 04 2025

Extensions

More terms from Vincenzo Librandi, Aug 06 2009
a(33)=214373522 inserted by Robert Israel, Jun 21 2018

A371004 Fourth powers whose digital sum is also a fourth power.

Original entry on oeis.org

0, 1, 10000, 14641, 100000000, 104060401, 146410000, 1000000000000, 1004006004001, 1040604010000, 1464100000000, 4228599998736, 8670998958336, 9748688599521, 9948826238976, 12598637895936, 19226786746896, 19896452775936, 20699669996721, 23768199069696, 26599197668481
Offset: 1

Views

Author

Stefano Spezia, Mar 08 2024

Keywords

Comments

Among the terms of this sequence, there are:
the numbers of the form 10^(4*k) with k >= 0;
the numbers of the form (10^i + 10^j)^4 with i > j >= 0.

Crossrefs

Programs

  • Mathematica
    Select[Range[0,2500]^4, IntegerQ[DigitSum[#]^(1/4)]&]

Formula

a(n) = A371047(n)^4.

A371047 Numbers k such that the digital sum of k^4 is a fourth power.

Original entry on oeis.org

0, 1, 10, 11, 100, 101, 110, 1000, 1001, 1010, 1100, 1434, 1716, 1767, 1776, 1884, 2094, 2112, 2133, 2208, 2271, 2292, 2298, 2514, 2544, 2556, 2604, 2628, 2892, 2919, 2922, 2976, 3006, 3018, 3066, 3078, 3096, 3111, 3126, 3138, 3144, 3159, 3162, 3492, 3498, 3504
Offset: 1

Views

Author

Stefano Spezia, Mar 09 2024

Keywords

Crossrefs

Cf. A000583, A007953, A011557 (subsequence), A038444 (subsequence), A061910, A237525, A371004.

Programs

  • Mathematica
    Select[Range[0,4000]^4,IntegerQ[DigitSum[#]^(1/4)]&]^(1/4)

Formula

a(n) = A371004(n)^(1/4).

A139369 Array read by antidiagonals, n-th sum of 2 distinct powers of k.

Original entry on oeis.org

3, 4, 5, 5, 10, 6, 6, 17, 12, 9, 7, 26, 20, 28, 10, 8, 37, 30, 65, 30, 12, 9, 50, 42, 126, 68, 36, 17, 10, 65, 56, 217, 130, 80, 82, 18, 11, 82, 72, 344, 222, 150, 257, 84, 20, 12, 101, 90, 513, 350, 252, 626, 260, 90, 24, 13, 122, 110, 730, 520, 392, 1297, 630, 272, 108
Offset: 1

Views

Author

Jonathan Vos Post, Jun 07 2008

Keywords

Comments

n=2 column is A002522 n^2 + 1.
n=3 column is A002378 n*(n+1) Oblong (or pronic, promic, or heteromecic numbers).

Examples

			Array begins:
================================================================================
k....|.n=1.|.n=2.|.n=3.|..n=4.|..n=5.|..n=6.|...n=7.|...n=8.|..n=9.|.n=10|.OEIS.
================================================================================
k=2..|..3..|...5.|..6..|....9.|...10.|...12.|....17.|...18..|...20.|..24.|A018900
k=3..|..4..|..10.|.12..|...28.|...30.|...36.|....82.|...84..|...90.|..108|A038464
k=4..|..5..|..17.|.20..|...65.|...68.|...80.|...257.|..260..|..272.|..320|A038470
k=5..|..6..|..26.|.30..|..126.|..130.|..150.|...626.|..630..|..650.|..750|A038474
k=6..|..7..|..37.|.42..|..217.|..222.|..252.|..1297.|..1302.|.1332.|.1512|A038478
k=7..|..8..|..50.|.56..|..344.|..350.|..392.|..2402.|..2408.|.2450.|.2744|A038481
k=8..|..9..|..65.|.72..|..513.|..520.|..576.|..4097.|..4104.|.4160.|.4608|A038484
k=9..|.10..|..82.|.90..|..730.|..738.|..810.|..6562.|..6570.|.6642.|.7290|A038487
k=10.|.11..|.101.|.110.|.1001.|.1010.|.1100.|.10001.|.10010.|10100.|11000|A038444
k=11.|.12..|.122.|.132.|.1332.|.1342.|.1452.|.14642.|.14652.|14762.|15972|A038490
k=12.|.13..|.145.|.156.|.1729.|.1740.|.1872.|.20737.|.20748.|20880.|22464|A038492
================================================================================
		

Crossrefs

Previous Showing 21-26 of 26 results.