cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-18 of 18 results.

A276816 Irregular triangle read by rows: T(n,m) = coefficients in power/Fourier series expansion of an arbitrary anharmonic oscillator's exact period.

Original entry on oeis.org

-24, 480, -120, 6720, 3360, -241920, 1774080, -560, 40320, 40320, -1774080, 20160, -3548160, 61501440, -591360, 92252160, -1845043200, 8364195840, -2520, 221760, 221760, -11531520, 221760, -23063040, 461260800, 110880, -23063040, -11531520, 1383782400, -15682867200, -11531520, 691891200, 1383782400, -62731468800, 476759162880
Offset: 1

Views

Author

Bradley Klee, Sep 18 2016

Keywords

Comments

The phase space trajectory A276738 has phase space angular velocity A276814 and differential time dependence A276815. We calculate the period K = Int dt over the range [2*Pi, 0], trivial to compute from A276815 using A273496. Then K/(2*Pi) = 1 + sum b^(2n)*T(n,m)*f'(n,m); where the sum runs over n = 1, 2, 3 ... and m = 1, 2, 3, ... A000041(2n), and f'(n,m) = f(2n,m) of A276738 with Q=1/2. Choosing one point from the infinite dimensional coefficient space--v_i=0 for odd i, v_i=(-1)^(i/2-1)/2/(i!) otherwise--setting b^2 = 4*k, and summing over the entire table obtains the EllipticK expansion 2*A038534/A038533. For more details read "Plane Pendulum and Beyond by Phase Space Geometry" (Klee, 2016).

Examples

			n/m   1     2     3         4         5
------------------------------------------
1  | -24   480
2  | -120  6720  3360   -241920   1774080
------------------------------------------
For pendulum values, f'(1,*)={(-1/384), 0}, f'(2,*) = {1/46080, 0, 1/294912, 0, 0}. Then K/(2Pi) = 1+(-1/384)*(-24)*4*k+((1/46080)*(-120)+(1/294912)*3360)*16*k^2=1+(1/4)*k + (9/64)*k^2, the first few terms of EllipticK.
		

Crossrefs

Programs

  • Mathematica
    RExp[n_]:=Expand[b Plus[R[0], Total[b^# R[#] & /@ Range[n]]]]
    RCalc[n_]:=With[{basis =Subtract[Tally[Join[Range[n + 2], #]][[All, 2]],Table[1, {n + 2}]] & /@ IntegerPartitions[n + 2][[3 ;; -1]]},
    Total@ReplaceAll[Times[-2, Multinomial @@ #, v[Total[#]],Times @@ Power[RSet[# - 1] & /@ Range[n + 2], #]] & /@ basis, {Q^2 -> 1, v[2] -> 1/4}]]
    dt[n_] := With[{exp = Normal[Series[-1/(1 + x)/.x -> Total[(2 # v[#] RExp[n - 1]^(# - 2) &/@Range[3, n + 2])], {b, 0, n}]]},
    Expand@ReplaceAll[Coefficient[exp, b, #] & /@ Range[n], R -> RSet]]
    RingGens[n_] :=Times @@ (v /@ #) & /@ (IntegerPartitions[n]/. x_Integer :> x + 2)
    tri[m_] := MapThread[Function[{a, b},Times[-# /. v[n_] :> Q^n /. Q^n_ :>  Binomial[n, n/2],(1/2) Coefficient[a, #]] & /@ b], {dt[2 m][[2 #]] & /@ Range[m], RingGens[2 #] & /@ Range[m]}]
    RSet[0] = 1; Set[RSet[#], Expand@RCalc[#]] & /@ Range[2*7];
    tri7 = tri[7]; tri7 // TableForm
    PeriodExpansion[tri_, n_] := ReplaceAll[ 1 + Dot[MapThread[ Dot, {tri,
      2 RingGens[2 #] & /@ Range[n]}], (2 h)^(Range[n])], {v[m_] :> (v[m]*(1/2)^m)}]
    {#,SameQ[Normal@Series[(2/Pi)*EllipticK[k],{k,0,7}],#]}&@ReplaceAll[
    PeriodExpansion[tri7,7],{v[n_/;OddQ[n]]:>0,v[n_]:> (-1)^(n/2-1)/2/(n!),h->2 k}]

A276817 Irregular triangle read by rows: T(n,m) = coefficients in power/Fourier series expansion of an arbitrary anharmonic oscillator's exact differential precession.

Original entry on oeis.org

-1, 2, 6, -3, -16, 8, -48, 4, 30, -20, 140, 10, -140, 420, -5, -48, 36, -288, -24, 384, -1280, 12, -192, -96, 1920, -3840, 6, 70, -56, 504, 42, -756, 2772, -28, 504, 252, -5544, 12012, 14, -252, -252, 2772, 2772, -24024, 36036, -7, -96, 80, -800, -64, 1280, -5120, 48, -960, -480, 11520, -26880, -32, 640, 640, -7680
Offset: 0

Views

Author

Bradley Klee, Sep 18 2016

Keywords

Comments

Irregular triangle read by rows (see examples).
Consider an axially symmetric oscillator in two dimensions with polar coordinates ( r, y ). By conservation of angular momentum, replace the cyclic angle coordinate y with dy/dt = 1/r^2. The system becomes one-dimensional in r, with an effective potential including the 1/r^2 term. Assume that the effective potential has a minimum around r0 and apply a linear transform r --> q = r-r0. Radial oscillations around the effective potential minimum follow the exact solution of A276738, A276814, A276815, A276816. Now dy = dx (dy/dt) / (dx/dt) = dx * Sum b^n*T(n,m)*F(n,m), with n=1,2,3.... and m=1,2,3...A000070(n). Basis functions F(n,m) are an ordered union over A276738's f(n,m): F(n,m')={ (1/r0^2)*(Q/r0)^n } & Append_{i=1..n}_{m=1..A000041(n)} (1/2/r0^2)*(Q/r0)^(n - i)*f(i,m), where each successive term f(i,m) is appended such that index m' inherets the ordering of each m index (see examples). Integrating dx over a range of 2 Pi loses all odd rows, as in A276815 / A276816. This sequence is a useful tool in classical and relativistic astronomy (follow links to Wolfram demonstrations).

Examples

			n/m   1   2    3    4      5     6    7
------------------------------------------
0  | -1
1  |  2   6
2  | -3  -16   8   -48
3  |  4   30  -20   140   10   -140   420
------------------------------------------
Construction of F(2,_). List f(i,_) basis sets: {f(1,_)={2*Q^3*v_3},f(2,_)= {2*Q^4*v_4, 2*Q^6*v_3^2}}; Integrate and join: F(2,_)={(1/r0^2)*(Q/r0)^2,2*Q^3*v_3*(1/2/r0^2)*(Q/r0),2*Q^4*v_4*(1/2/r0^2), 2*Q^6*v_3^2*(1/2/r0^2)}={Q^2/r0^4,Q^4*v_3/r0^3,Q^4*v_4/r0^2,Q^6*v_3^2/r0^2}.
dy Expansion to second order: dy=dx(-(1/r0^2)+b^2*(2*Q/r0^3 + 6*Q^3*v_3/r0^2)+b^3*(-3*Q^2/r0^4 - 16*Q^4*v_3/r0^3 - 48*Q^6*v_3^2/r0^2 + 8*Q^4*v_4/r0^2)+O(b^3).
Cancellation of higher orders 1 to infinity and closed orbits. Kepler values {r0 = 1, v_n := ((n - 1)/4)*(-1)^n} yield dy = -dx. Harmonic oscillator values {r0 = Sqrt[2], v_n := ((-1)^n*(n + 1)/4/2)/sqrt[2]^n} yield dy = -(1/2)*dx. Parity symmetric conjectured values {r0=Sqrt[1/R],v_n odd n := 0,v_n even n := R^(n/2 - 1)*(n/8)} yield dy = -R*dx (see attached image "Pentagonal Orbits")?
		

References

  • R. M. Wald, General Relativity, University of Chicago press, 2010, pages 139-143.
  • J.A. Wheeler, A Journey into Gravity and Spacetime, Scientific American Library, 1990, pages 168-183.

Crossrefs

Programs

  • Mathematica
    R[n_] := b Plus[1, Total[b^# R[#, q] & /@ Range[n]]]
    Vp[n_] := Total[2 v[# + 2] q^(# + 2) & /@ Range[n]]
    H[n_] := Expand[1/2*r^2 + Vp[n]]
    RRules[n_] :=  With[{H = Series[ReplaceAll[H[n], {q -> R[n] Q, r -> R[n]}], {b, 0, n + 2}]},  Function[{rules},
        Nest[Rule[#[[1]], ReplaceAll[#[[2]], rules]] & /@ # &, rules, n]][
       Flatten[R[#, q] -> Expand[-ReplaceAll[ Coefficient[H, b^(# + 2)], {R[#, q] -> 0}]] & /@ Range[n]]]]
    xDot[n_] := Expand[Normal@Series[ReplaceAll[ Q^2 D[D[q[t], t]/q[t], t], {D[q[t], t] -> R[n] P, q[t] -> R[n] Q, r -> R[n], D[q[t], {t, 2}]
    ->  ReplaceAll[D[-(q^2/2 + Vp[n]), q], q -> R[n] Q]} ], {b, 0, n}] /. RRules[n] /. {P^2 -> 1 - Q^2}]
    ydot[n__] := Expand[Normal@Series[1/(r0 + q)^2 /. {q -> R[n] Q} /. RRules[n], {b, 0, n}]]
    dy[n_] := Expand@Normal@Series[ydot[n]/xDot[n], {b, 0, n}]
    basis[n_] :=  Times[Times @@ (v /@ #), Q^Total[#],2] & /@ (IntegerPartitions[n] /. x_Integer :> x + 2)
    extendedBasis[n_] :=Flatten[(1/2/r0^2) (Q/r0)^(n - #) basis[#] & /@ Range[0, n]]
    TriangleRow[n_, func_] := Coefficient[func, b^n #] & /@ extendedBasis[n]
    With[{dy5 = dy[5]}, TriangleRow[#, dy5] /. v[_] -> 0 & /@ Range[0, 5]]
    (*Kepler Test*)TrigReduce[dy[5] /. {Q -> Cos[x]}] /. {r0 -> 1, Cos[] -> 0, v[n] :> ((n - 1)/4)*(-1)^n}
    (*Harmonic Test*)TrigReduce[dy[5] /. {Q -> Cos[x]}] /. {Cos[] -> 0, v[n] :> ((-1)^n*(n + 1)/4/2)/Sqrt[2]^n, r0 -> Sqrt[2]}
    (*Conjecture*)TrigReduce[dy[5] /. {Q -> Cos[x]}] /. {Cos[] -> 0, v[n /; OddQ[n]] :> 0, v[n_] :> RR^(n/2 - 1)*n/8, r0 -> Sqrt[1/RR]}

A038535 Numerators of coefficients of EllipticE/Pi.

Original entry on oeis.org

1, -1, -3, -5, -175, -441, -4851, -14157, -2760615, -8690825, -112285459, -370263621, -19870814327, -67607800225, -931331941875, -3241035157725, -2913690606794775, -10313859829588425, -147068001273760875, -527570807893408125, -30451387031607516975
Offset: 0

Views

Author

Wouter Meeussen, revised Jan 03 2001

Keywords

Comments

Contribution from Wolfdieter Lang, Nov 08 2010: (Start)
a(n)/A056982(n) = -(binomial(2*n,n)^2)/((2*n-1)*2^(4*n)), n>=0, are the coefficients of x^n of hypergeometric([1/2,-1/2],[1],x).
The series hypergeometric([1/2,-1/2],[1],e^2)=L/(2*Pi*a) with L the perimeter of an ellipse with major axis a and numerical eccentricity e. (End)

Crossrefs

a(n) divides A000891(n+1).

Programs

  • Mathematica
    Numerator[CoefficientList[Series[EllipticE[m]/Pi,{m,0,25}],m]] (* Harvey P. Dale, Dec 16 2011 *)

Formula

a(n) = 2^(-2 w[n])binomial[2n, n]^2 (-1)^(2n)/(1-2n) with w[n]=A000120 = number of 1's in binary expansion of n

A276814 Irregular triangle read by rows T(n,m), coefficients in power/Fourier series expansion of an arbitrary anharmonic oscillator's exact phase space angular velocity.

Original entry on oeis.org

-3, -4, 6, -5, 22, -30, -6, 36, 16, -168, 192, -7, 54, 46, -294, -266, 1428, -1386, -8, 76, 64, -480, 30, -832, 2560, -128, 3520, -12800, 10752, -9, 102, 86, -738, 78, -1260, 4356, -594, -558, 11484, -23166, 3564, -42900, 118404, -87516, -10, 132, 112, -1080, 100, -1840, 7040, 48, -1680, -800, 18240, -40320, -760, 8640
Offset: 1

Views

Author

Bradley Klee, Sep 18 2016

Keywords

Comments

Irregular triangle read by rows ( see examples ). The phase space trajectory of A276738 has one time dependent variable, the phase space angle "x" defined as Tan[x]=p/q. Then dx/dt = cos[x]^2* d/dt(p/q), which can be written as a function of Q=cos[x] by application of the classical equations of motion d/dt(p,q) = ( -d/dq H, d/dp H ), with H the anharmonic oscillator Hamiltonian. Substituting the result of A276738 and expanding in powers of b, we obtain dx/dt = -1 + sum b^n*T(n,m)*f(n,m); where the sum runs over n=1,2,3... and m = 1,2,3, ... A000041(n). The basis functions f(n,m) are the same as in A276738. Observe the limit where Q --> 0, dx/dt --> -1, the harmonic oscillator value. Similarly if v_i --> 0 then dx/dt --> -1.

Examples

			n/m  1    2     3     4     5     6      7
---------------------------------------------
1  | -3
2  | -4,  6
3  | -5,  22,  -30
4  | -6,  36,   16,  -168   192
5  | -7,  54,   46,  -294  -266   1428  -1386
---------------------------------------------
		

Crossrefs

Programs

  • Mathematica
    R[n_] := b Plus[1, Total[b^# R[#, q] & /@ Range[n]]]
    Vp[n_] := Total[2 v[# + 2] q^(# + 2) & /@ Range[n]]
    H[n_] := Expand[1/2*r^2 + Vp[n]]
    RRules[n_] :=  With[{H = Series[ReplaceAll[H[n], {q -> R[n] Q, r -> R[n]}], {b, 0, n + 2}]},  Function[{rules},
        Nest[Rule[#[[1]], ReplaceAll[#[[2]], rules]] & /@ # &, rules, n]][
       Flatten[R[#, q] -> Expand[-ReplaceAll[ Coefficient[H, b^(# + 2)], {R[#, q] -> 0}]] & /@ Range[n]]]]
    xDot[n_] := Expand[Normal@Series[ReplaceAll[ Q^2 D[D[q[t], t]/q[t], t], {D[q[t], t] -> R[n] P, q[t] -> R[n] Q, r -> R[n], D[q[t], {t, 2}]
    ->  ReplaceAll[D[-(q^2/2 + Vp[n]), q], q -> R[n] Q]} ], {b, 0, n}] /. RRules[n] /. {P^2 -> 1 - Q^2}]
    basis[n_] :=  Times[Times @@ (v /@ #), Q^Total[#],2] & /@ (IntegerPartitions[n] /. x_Integer :> x + 2)
    TriangleRow[n_, fun_] := Coefficient[fun, b^n #] & /@ basis[n]
    With[{xd = xDot[10]},TriangleRow[#, xd] /. v[_] -> 0 & /@ Range[10]]

A276815 Irregular triangle read by rows T(n,m), coefficients in power/Fourier series expansion of an arbitrary anharmonic oscillator's exact differential time dependence.

Original entry on oeis.org

3, 4, -24, 5, -70, 210, 6, -96, -48, 960, -1920, 7, -126, -126, 1386, 1386, -12012, 18018, 8, -160, -160, 1920, -80, 3840, -17920, 640, -26880, 143360, -172032, 9, -198, -198, 2574, -198, 5148, -25740, 2574, 2574, -77220, 218790, -25740, 437580, -1662804, 1662804, 10, -240, -240, 3360, -240, 6720, -35840, -120, 6720, 3360
Offset: 1

Views

Author

Bradley Klee, Sep 18 2016

Keywords

Comments

The phase space trajectory A276738 has phase space angular velocity A276814, which allows expansion of dt = dx /(dx/dt) = dx(-1 + sum b^n*T(n,m)*f(n,m)); where the sum runs over n = 1, 2, 3 ... and m = 1, 2, 3, ... A000041(n). The basis functions f(n,m) are the same as in A276738. To obtain period K, we integrate the function of Q=cos[x] over a range of [2*pi,0]. All odd powers of Q integrate to zero, so the period is an expansion in E=(1/2)*b^2 (Cf. A276816). This sequence transforms into A274076/A274078 by setting v_i=0 for odd i, v_i=(-1)^(i/2-1)/2/(i!) otherwise, and (1/2)*b^2 = 2*k. For more details read "Plane Pendulum and Beyond by Phase Space Geometry" (Klee, 2016).

Examples

			n/m  1    2     3     4      5      6      7
------------------------------------------------
1  | 3
2  | 4   -24
3  | 5   -70    210
4  | 6   -96   -48   960   -1920
5  | 7   -126  -126  1386   1386  -12012  18018
------------------------------------------------
		

Crossrefs

Programs

  • Mathematica
    R[n_] := b Plus[1, Total[b^# R[#, q] & /@ Range[n]]]
    Vp[n_] := Total[2 v[# + 2] q^(# + 2) & /@ Range[n]]
    H[n_] := Expand[1/2*r^2 + Vp[n]]
    RRules[n_] :=  With[{H = Series[ReplaceAll[H[n], {q -> R[n] Q, r -> R[n]}], {b, 0, n + 2}]},  Function[{rules},
        Nest[Rule[#[[1]], ReplaceAll[#[[2]], rules]] & /@ # &, rules, n]][
       Flatten[R[#, q] -> Expand[-ReplaceAll[ Coefficient[H, b^(# + 2)], {R[#, q] -> 0}]] & /@ Range[n]]]]
    xDot[n_] := Expand[Normal@Series[ReplaceAll[ Q^2 D[D[q[t], t]/q[t], t], {D[q[t], t] -> R[n] P, q[t] -> R[n] Q, r -> R[n], D[q[t], {t, 2}]
    ->  ReplaceAll[D[-(q^2/2 + Vp[n]), q], q -> R[n] Q]} ], {b, 0, n}] /. RRules[n] /. {P^2 -> 1 - Q^2}]
    dt[n_] := Expand[Normal@Series[1/xDot[n], {b, 0, n}]]
    basis[n_] :=  Times[Times @@ (v /@ #), Q^Total[#],2] & /@ (IntegerPartitions[n] /. x_Integer :> x + 2)
    TriangleRow[n_, fun_] := Coefficient[fun, b^n #] & /@ basis[n]
    With[{dt10 = dt[10]}, TriangleRow[#, dt10] /. v[_] -> 0 & /@ Range[10]]

A094083 Numerators of ratio of sides of n-th triple of rectangles of unit area sum around a triangle.

Original entry on oeis.org

1, 1, 1, 4, 9, 64, 25, 256, 1225, 16384, 3969, 65536, 53361, 1048576, 184041, 4194304, 41409225, 1073741824, 147744025, 4294967296, 2133423721, 68719476736, 7775536041, 274877906944, 457028729521, 17592186044416, 1690195005625
Offset: 1

Views

Author

Peter J. C. Moses, Apr 30 2004

Keywords

Comments

Page 13 of the link shows the type of configuration. When n is odd, the numerators 1,1,9,25,1225,3969,.. are A038534 and (A001790)^2, and the denominators 1,4,64,256,16384,65536,.. are A056982, A038533/2, and (A046161)^2. When n is even, the numerators 1,4,64,256,16384,65536,.. are A056982, A038533/2, and (A046161)^2, and the denominators 3,27,675,3675,297675,1440747,.. are 3*(A001803)^2. The limit of a(n+1)/a(n) as n(odd) tends to infinity = Pi^2/12, A072691. The limit of a(n+2)/a(n) as n tends to infinity = 1. a(n), for large odd n, tends to 2/(Pi*n). a(n), for large even n, tends to Pi/(6*n). The expansion of 2*x*EllipticK(x)/Pi gives the odd fractions. The expansion of 1/3*x*HypergeometricPFQ({1,1,1},{3/2,3/2},x) gives the even fractions.

Examples

			a(5) = a(5-2)*((5-2)/(5-1))^2 = 1/4*(3/4)^2 = 9/64
		

Crossrefs

Programs

  • Mathematica
    a[n_]:=If[OddQ[n], ((n/2-1)!)^2/(Pi*((n/2-1/2)!)^2), Pi*((n/2-1)!)^2/(12*((n/2-1/2)!)^2)] a[n_]:=If[OddQ[n], (2^(1-n)*(n-2)!!^2)/((n-1)/2)!^2, (2^(n-2)*((n-2)/2)!^2)/(3*(n-1)!!^2)] a[n_]:=((12+Pi^2+E^(I*n*Pi)*(Pi^2-12))*((n/2-1)!)^2)/(24*Pi*((n/2-1/2)!)^2) (CoefficientList[Series[(I*x*(6+Sqrt[3]*Pi)-2*x*Sqrt[3]*Log[x+Sqrt[x^2-1]])/(6*Sqrt[x^2-1]), {x, 0, 20}], x])^2

Formula

a(n)=a(n-2)*((n-2)/(n-1))^2, a(1)=1, a(2)=1/3. a(n)=((n/2-1)!)^2/(Pi*((n/2-1/2)!)^2) for n odd. a(n)=(2^(1-n)*(n-2)!!^2)/((n-1)/2)!^2 for n odd. a(n)=Pi*((n/2-1)!)^2/(12*((n/2-1/2)!)^2) for n even. a(n)=(2^(n-2)*((n-2)/2)!^2)/(3*(n-1)!!^2) for n even.

A060629 1/2+Sum_{n >= 1} a(n)*x^(2*n)/(4^n*(2*n)!) = 1/Pi*EllipticK(x).

Original entry on oeis.org

1, 27, 2250, 385875, 112521150, 49921883550, 31336679474100, 26440323306271875, 28866957423047493750, 39599692192936551926250, 66678681708870074070727500, 135213253391970365203090248750
Offset: 1

Views

Author

Vladeta Jovovic, Apr 14 2001

Keywords

Examples

			EllipticK(x) = 1/2*Pi + 1/8*Pi*x^2 + 9/128*Pi*x^4 + 25/512*Pi*x^6 + 1225/32768*Pi*x^8 + 3969/131072*Pi*x^10 + O(x^12).
		

Crossrefs

Programs

  • Mathematica
    Table[Binomial[2*n, n]*Binomial[2*n - 1, n]*(2*n)!/4^n, {n, 1, 20}] (* Vaclav Kotesovec, Nov 14 2023 *)

Formula

From Vaclav Kotesovec, Nov 14 2023: (Start)
a(n) = binomial(2*n,n) * binomial(2*n-1,n) * (2*n)! / 4^n.
a(n) ~ 2^(4*n) * n^(2*n - 1/2) / (sqrt(Pi) * exp(2*n)). (End)

A376643 Decimal expansion 4*EllipticK(4/5)/sqrt(5), where EllipticK is the complete elliptic integral of the first kind.

Original entry on oeis.org

4, 0, 3, 7, 8, 1, 1, 6, 3, 9, 9, 5, 6, 8, 4, 6, 4, 3, 1, 1, 6, 8, 0, 2, 8, 8, 7, 9, 9, 9, 7, 8, 6, 4, 9, 3, 0, 1, 3, 6, 0, 8, 3, 9, 9, 3, 4, 0, 8, 8, 0, 6, 8, 5, 7, 8, 6, 3, 4, 9, 6, 1, 5, 9, 8, 9, 7, 7, 7, 3, 8, 3, 7, 8, 6, 5, 3, 1, 9, 4, 7, 4, 4, 4, 0, 7, 7, 0, 1, 5, 0, 7, 0, 3, 3, 7, 9, 1, 9, 6, 9, 1, 0, 5, 7
Offset: 1

Views

Author

Amiram Eldar, Oct 01 2024

Keywords

Comments

A point mass is attached to a frictionless pivot by a massless string of length L and revolves in a vertical circle about the pivot in a uniform gravitational field with an acceleration g. The slowest possible motion occurs when the tension in the string is momentarily zero at the top of the route, and the longest-possible period is then c * sqrt(L/g), where c is this constant.

Examples

			4.03781163995684643116802887999786493013608399340880...
		

Crossrefs

Constants related to similar physical problems: A019692, A038533, A038534, A175574, A256514, A309893, A310000.

Programs

  • Mathematica
    RealDigits[4 * EllipticK[4/5] / Sqrt[5], 10, 120][[1]]
  • PARI
    4*ellK(sqrt(4/5))/sqrt(5)

Formula

Equals 2 * Integral_{0..Pi} (1/sqrt(3 + 2*cos(x))) dx.
Previous Showing 11-18 of 18 results.