cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A000891 a(n) = (2*n)!*(2*n+1)! / (n! * (n+1)!)^2.

Original entry on oeis.org

1, 3, 20, 175, 1764, 19404, 226512, 2760615, 34763300, 449141836, 5924217936, 79483257308, 1081724803600, 14901311070000, 207426250094400, 2913690606794775, 41255439318353700, 588272005095043500
Offset: 0

Views

Author

Keywords

Comments

Number of parallelogram polyominoes having n+1 columns and n+1 rows. - Emeric Deutsch, May 21 2003
Number of tilings of an hexagon.
a(n) is the number of non-crossing partitions of [2n+1] into n+1 blocks. For example, a[1] counts 13-2, 1-23, 12-3. - David Callan, Jul 25 2005
The number of returning walks of length 2n on the upper half of a square lattice, since a(n) = Sum_{k=0..2n} binomial(2n,k)*A126120(k)*A126869(n-k). - Andrew V. Sutherland, Mar 24 2008
For sequences counting walks in the upper half-plane starting from the origin and finishing at the lattice points (0,m) see A145600 (m = 1), A145601 (m = 2), A145602 (m = 3) and A145603 (m = 4). - Peter Bala, Oct 14 2008
The number of proper mergings of two n-chains. - Henri Mühle, Aug 17 2012
a(n) is number of pairs of non-intersecting lattice paths from (0,0) to (n+1,n+1) using (1,0) and (0,1) as steps. Here, non-intersecting means two paths do not share a vertex except the origin and the destination. For example, a(1) = 3 because we have three such pairs from (0,0) to (2,2): {NNEE,EENN}, {NNEE,ENEN}, {NENE,EENN}. - Ran Pan, Oct 01 2015
Also the number of ordered rooted trees with 2(n+1) nodes and n+1 leaves, i.e., half of the nodes are leaves. These trees are ranked by A358579. The unordered version is A185650. - Gus Wiseman, Nov 27 2022
The number of secondary GL(2) invariants constructed from n+1 two component vectors. This number was evaluated by using the Molien-Weyl formula to compute the Hilbert series of the ring of invariants. - Jaco van Zyl, Jun 30 2025

Examples

			G.f. = 1 + 3*x + 20*x^2 + 175*x^3 + 1764*x^4 + 19404*x^5 + ...
From _Gus Wiseman_, Nov 27 2022: (Start)
The a(2) = 20 ordered rooted trees with 6 nodes and 3 leaves:
  (((o)oo))  (((o)o)o)  (((o))oo)
  (((oo)o))  (((oo))o)  ((o)(o)o)
  (((ooo)))  ((o)(oo))  ((o)o(o))
  ((o(o)o))  ((o(o))o)  (o((o))o)
  ((o(oo)))  ((oo)(o))  (o(o)(o))
  ((oo(o)))  (o((o)o))  (oo((o)))
             (o((oo)))
             (o(o(o)))
(End)
		

References

  • J. M. Borwein and P. B. Borwein, Pi and the AGM, Wiley, 1987, p. 8.
  • E. R. Hansen, A Table of Series and Products, Prentice-Hall, Englewood Cliffs, NJ, 1975, p. 94.

Crossrefs

Cf. A145600, A145601, A145602, A145603. - Peter Bala, Oct 14 2008
Equals half of A267981.
Counts the trees ranked by A358579.
A001263 counts ordered rooted trees by nodes and leaves.
A090181 counts ordered rooted trees by nodes and internals.

Programs

  • Haskell
    a000891 n = a001263 (2 * n - 1) n  -- Reinhard Zumkeller, Oct 10 2013
  • Magma
    [Factorial(2*n)*Factorial(2*n+1) / (Factorial(n) * Factorial(n+1))^2: n in [0..20]]; // Vincenzo Librandi, Aug 15 2011
    
  • Maple
    with(combstruct): bin := {B=Union(Z,Prod(B,B))} :seq(1/2*binomial(2*i,i)*(count([B,bin,unlabeled],size=i)), i=1..18) ; # Zerinvary Lajos, Jun 06 2007
  • Mathematica
    a[ n_] := If[ n == -1, 0, Binomial[2 n + 1, n]^2 / (2 n + 1)]; (* Michael Somos, May 28 2014 *)
    a[ n_] := SeriesCoefficient[ (1 - Hypergeometric2F1[ -1/2, 1/2, 1, 16 x]) / (4 x), {x, 0, n}]; (* Michael Somos, May 28 2014 *)
    a[ n_] := If[ n < 0, 0, (2 n)! SeriesCoefficient[ BesselI[0, 2 x] BesselI[1, 2 x] / x, {x, 0, 2 n}]]; (* Michael Somos, May 28 2014 *)
    a[ n_] := SeriesCoefficient[ (1 - EllipticE[ 16 x] / (Pi/2)) / (4 x), {x, 0, n}]; (* Michael Somos, Sep 18 2016 *)
    a[n_] := (2 n + 1) CatalanNumber[n]^2;
    Array[a, 20, 0] (* Peter Luschny, Mar 03 2020 *)
  • PARI
    {a(n) = binomial(2*n+1, n)^2 / (2*n + 1)}; /* Michael Somos, Jun 22 2005 */
    
  • PARI
    a(n) = matdet(matrix(n, n, i, j, binomial(n+j+1,i+1))) \\ Hugo Pfoertner, Oct 22 2022
    

Formula

-4*a(n) = A010370(n+1).
G.f.: (1 - E(16*x)/(Pi/2))/(4*x) where E() is the elliptic integral of the second kind. [edited by Olivier Gérard, Feb 16 2011]
G.f.: 3F2(1, 1/2, 3/2; 2,2; 16*x)= (1 - 2F1(-1/2, 1/2; 1; 16*x)) / (4*x). - Olivier Gérard, Feb 16 2011
E.g.f.: Sum_{n>=0} a(n)*x^(2*n)/(2*n)! = BesselI(0, 2*x) * BesselI(1, 2*x) / x. - Michael Somos, Jun 22 2005
a(n) = A001700(n)*A000108(n) = (1/2)*A000984(n+1)*A000108(n). - Zerinvary Lajos, Jun 06 2007
For n > 0, a(n) = (n+2)*A000356(n) starting (1, 5, 35, 294, ...). - Gary W. Adamson, Apr 08 2011
a(n) = A001263(2*n+1,n+1) = binomial(2*n+1,n+1)*binomial(2*n+1,n)/(2*n+1) (central members of odd numbered rows of Narayana triangle).
G.f.: If G_N(x) = 1 + Sum_{k=1..N} ((2*k)!*(2*k+1)!*x^k)/(k!*(k+1)!)^2, G_N(x) = 1 + 12*x/(G(0) - 12*x); G(k) = 16*x*k^2 + 32*x*k + k^2 + 4*k + 12*x + 4 - 4*x*(2*k+3)*(2*k+5)*(k+2)^2/G(k+1); (continued fraction). - Sergei N. Gladkovskii, Nov 24 2011
D-finite with recurrence (n+1)^2*a(n) - 4*(2*n-1)*(2*n+1)*a(n-1) = 0. - R. J. Mathar, Dec 03 2012
a(n) = A005558(2n). - Mark van Hoeij, Aug 20 2014
a(n) = A000894(n) / (n+1) = A248045(n+1) / A000142(n+1). - Reinhard Zumkeller, Sep 30 2014
From Ilya Gutkovskiy, Feb 01 2017: (Start)
E.g.f.: 2F2(1/2,3/2; 2,2; 16*x).
a(n) ~ 2^(4*n+1)/(Pi*n^2). (End)
a(n) = A005408(n)*(A000108(n))^2. - Ivan N. Ianakiev, Nov 13 2019
a(n) = det(M(n)) where M(n) is the n X n matrix with m(i,j) = binomial(n+j+1,i+1). - Benoit Cloitre, Oct 22 2022
a(n) = Integral_{x=0..16} x^n*W(x) dx, where W(x) = (16*EllipticE(1 - x/16) - x*EllipticK(1 - x/16))/(8*Pi^2*sqrt(x)), n=>0. W(x) diverges at x=0, monotonically decreases for x>0, and vanishes at x=16. EllipticE and EllipticK are elliptic functions. This integral representation as n-th moment of a positive function W(x) on the interval [0, 16] is unique. - Karol A. Penson, Dec 20 2023

Extensions

More terms from Andrew V. Sutherland, Mar 24 2008

A056982 a(n) = 4^A005187(n). The denominators of the Landau constants.

Original entry on oeis.org

1, 4, 64, 256, 16384, 65536, 1048576, 4194304, 1073741824, 4294967296, 68719476736, 274877906944, 17592186044416, 70368744177664, 1125899906842624, 4503599627370496, 4611686018427387904, 18446744073709551616, 295147905179352825856, 1180591620717411303424
Offset: 0

Views

Author

Keywords

Comments

Also equal to A046161(n)^2.
Let W(n) = Product_{k=1..n} (1- 1/(4*k^2)), the partial Wallis product with lim n -> infinity W(n) = 2/Pi; a(n) = denominator(W(n)). The numerators are in A069955.
Equivalently, denominators in partial products of the following approximation to Pi: Pi = Product_{n >= 1} 4*n^2/(4*n^2-1). Numerators are in A069955.
Denominator of h^(2n) in the Kummer-Gauss series for the perimeter of an ellipse.
Denominators of coefficients in hypergeometric([1/2,-1/2],[1],x). The numerators are given in A038535. hypergeom([1/2,-1/2],[1],e^2) = L/(2*Pi*a) with the perimeter L of an ellipse with major axis a and numerical eccentricity e (Maclaurin 1742). - Wolfdieter Lang, Nov 08 2010
Also denominators of coefficients in hypergeometric([1/2,1/2],[1],x). The numerators are given in A038534. - Wolfdieter Lang, May 29 2016
Also denominators of A277233. - Wolfdieter Lang, Nov 16 2016
A277233(n)/a(n) are the Landau constants. These constants are defined as G(n) = Sum_{j=0..n} g(j)^2, where g(n) = (2*n)!/(2^n*n!)^2 = A001790(n)/A046161(n). - Peter Luschny, Sep 27 2019

References

  • J.-P. Delahaye, Pi - die Story (German translation), Birkhäuser, 1999 Basel, p. 84. French original: Le fascinant nombre Pi, Pour la Science, Paris, 1997.
  • O. J. Farrell and B. Ross, Solved Problems in Analysis, Dover, NY, 1971; p. 77.

Crossrefs

Apart from offset, identical to A110258.
Equals (1/2)*A038533(n), A038534, A277233.

Programs

  • Maple
    A056982 := n -> denom(binomial(1/2, n))^2:
    seq(A056982(n), n=0..19); # Peter Luschny, Apr 08 2016
    # Alternatively:
    G := proc(x) hypergeom([1/2,1/2], [1], x)/(1-x) end: ser := series(G(x), x, 20):
    [seq(coeff(ser,x,n), n=0..19)]: denom(%); # Peter Luschny, Sep 28 2019
  • Mathematica
    Table[Power[4, 2 n - DigitCount[2 n, 2, 1]], {n, 0, 19}] (* Michael De Vlieger, May 30 2016, after Harvey P. Dale at A005187 *)
    G[x_] := (2 EllipticK[x])/(Pi (1 - x));
    CoefficientList[Series[G[x], {x, 0, 19}], x] // Denominator (* Peter Luschny, Sep 28 2019 *)
  • PARI
    a(n)=my(s=n); while(n>>=1, s+=n); 4^s \\ Charles R Greathouse IV, Apr 07 2012

Formula

a(n) = (denominator(binomial(1/2, n)))^2. - Peter Luschny, Sep 27 2019

Extensions

Edited by N. J. A. Sloane, Feb 18 2004, Jun 05 2007

A038534 Numerators of coefficients of EllipticK/Pi.

Original entry on oeis.org

1, 1, 9, 25, 1225, 3969, 53361, 184041, 41409225, 147744025, 2133423721, 7775536041, 457028729521, 1690195005625, 25145962430625, 93990019574025, 90324408810638025, 340357374376418025, 5147380044581630625, 19520119892056100625, 1187604094232693162025
Offset: 0

Views

Author

Wouter Meeussen, revised Jan 03 2001

Keywords

Comments

The denominators are given in A038533.
Also numerators in expansion of the hypergeometric series 2F1(1/2,1/2; 1; x).
This means numerators of the expansion coefficients of 2*K(k)/Pi = 2F1(1/2,1/2; 1; k^2) in powers of k^2, with K(k) the complete elliptic integral of the first kind. The denominators are given in A056982. The period T of the plane pendulum (mass m, length L, Earth's gravity g, energy E) is 4*sqrt(L/g)*K(sin(phi_0/2)) with cos(phi_0) = -E/(m*g*L) (maximal phi value). See the Landau - Lifschitz reference, p. 30. - Wolfdieter Lang, May 29 2016
It is easy and inexpensive to make a satisfactory precision measurement of a(1)/4, a(2)/64, and a(3)/256 using a pendulum rigged from a computer mouse. In "Digital Pendulum Data Analysis" (see links) amplitude vs. time data is transformed to period vs. sin(phi_0/2)^2 data, thus allowing extraction of expansion coefficients as fit parameters. - Bradley Klee, Dec 25 2016

References

  • B. C. Berndt, Ramanujan's Notebooks Part III, Springer-Verlag, see p. 91, Eq. 2.1.
  • L. D. Landau und E. M. Lifschitz, Mechanik, Akademie Verlag, Berlin, 1967, p. 30 (Exercise 1 in chapter III, paragraph 11.)

Crossrefs

Programs

  • Maple
    swing := proc(n) option remember; if n = 0 then 1 elif n mod 2 = 1 then swing(n-1)*n else 4*swing(n-1)/n fi end:
    sigma := n -> 2^(add(i, i = convert(iquo(n, 2), base, 2))):
    a := n -> (swing(2*n)/sigma(2*n))^2; seq(a(n),n=0..20); # Peter Luschny, Aug 06 2014
  • Mathematica
    Numerator@ CoefficientList[ Series[ EllipticK@x, {x, 0, 19}]/Pi, x] (* Robert G. Wilson v, Jul 19 2007 *)

Formula

a(n) = 2^(-2*w(n))*binomial(2*n,n)^2 with w(n) = A000120(n), the number of 1's in binary expansion of n.
a(n) = A001790(n)^2.
a(n) = (A056040(2*n)/A060632(2*n))^2. - Peter Luschny, Aug 06 2014
a(n) = (-1)^n*A056982(n)*C(-1/2,n)*C(n-1/2,n). - Peter Luschny, Apr 08 2016
a(n) = numerator(((2*n)!/(2^(2*n)*(n!)^2))^2). - Stefano Spezia, May 01 2025

A038533 Denominator of coefficients of both EllipticK/Pi and EllipticE/Pi.

Original entry on oeis.org

2, 8, 128, 512, 32768, 131072, 2097152, 8388608, 2147483648, 8589934592, 137438953472, 549755813888, 35184372088832, 140737488355328, 2251799813685248, 9007199254740992, 9223372036854775808, 36893488147419103232, 590295810358705651712, 2361183241434822606848
Offset: 0

Views

Author

Wouter Meeussen, revised Jan 03 2001

Keywords

Comments

Denominators are powers of 2 since EllipticK(x) = Pi * Sum_{n>=0} 2^(-4*n-1) * binomial(2*n,n)^2 * x^n and EllipticE(x) = Pi * Sum_{n>=0} 2^(-4*n-1) (-1)^(2*n) * binomial(2*n,n)^2 /(-2*n+1) * x^n.

Crossrefs

Equals 2*A056982(n).

Programs

  • Mathematica
    a[n_] := 2^(4*n - 2*DigitCount[n, 2, 1] + 1); Array[a, 20, 0] (* Amiram Eldar, Aug 03 2023 *)
  • PARI
    a(n)=my(s=n); while(n>>=1, s+=n); 2<<(2*s) \\ Charles R Greathouse IV, Apr 07 2012

Formula

a(n) = 2^(1+4*n-2*w(n)) with w(n) = A000120(n) = number of 1's in binary expansion of n.
Showing 1-4 of 4 results.