cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-39 of 39 results.

A307245 First occurrence of n in A306722.

Original entry on oeis.org

11, 1, 3, 10, 27, 60, 72, 120, 180, 270, 480, 252, 1155, 720, 792, 1260, 630, 1050, 4590, 1680, 1320, 7980, 3780, 4680, 5880, 5040, 5460, 4620, 9180, 10080, 10710, 6930, 9240, 7560, 21420, 20790, 27300, 52080, 15120, 13860, 48510, 23940, 62370, 46200, 16380, 30030
Offset: 0

Views

Author

Keywords

Comments

Record values: 11, 27, 60, 72, 120, 180, 270, 480, 1155, 1260, 4590, 7980, 9180, 10080, 10710, 21420, 27300, 52080, 62370, 191520, 207480, 214200, 428400, ..., .

Examples

			a(0) = 11  because (2*11)^2 = 484 is the smaller integer that can't be written as (p-1)*(q-1) with p,q primes, p < q.
a(3) = 10 because (2*10)^2 = 400 is the smaller integer such that the Diophantine equation (p-1)*(q-1) = 400 has three solutions: (p,q) = (2,401) = (5,101) = (11,41); also, phi(2*401) = phi(5*101) = phi(11*41) = 20^2.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := Length@ Select[ Divisors[ 4n^2], # < 2n && PrimeQ[# +1] && PrimeQ[4n^2/# +1] &]; t[_] := 0; k = 1; While[k < 100000, a = f@k; If[t[a] == 0, t[a] = k]; k++]; t@# & /@ Range[0, 50]

A334350 Least positive integer m relatively prime to n such that phi(m*n) = phi(m)*phi(n) is a fourth power, where phi is Euler's totient function (A000010).

Original entry on oeis.org

1, 1, 16, 15, 8, 703, 247, 5, 247, 489, 1255, 5, 109, 247, 4, 3, 1, 247, 73, 3, 109, 1255, 13315, 163, 753, 109, 73, 109, 1373, 163, 27331, 1, 625, 1, 81, 109, 57, 73, 1295, 1, 251, 109, 74663, 625, 949, 13315, 1557377, 1, 74663, 753, 16, 81, 175765, 73, 251, 81, 37, 1373, 243895, 1
Offset: 1

Views

Author

Zhi-Wei Sun, Apr 24 2020

Keywords

Comments

Conjecture: For any positive integers k and m, there is a positive integer n relatively prime to m such that phi(m*n) = phi(m)*phi(n) is a k-th power.
This conjecture implies that a(n) exists for every n = 1,2,3,....
See also A334353 for a similar conjecture involving the sigma function (A000203).
a(n) = 1 if and only if n is in A078164. - Charles R Greathouse IV, Apr 24 2020

Examples

			a(3) = 16 with gcd(3,16) = 1 and phi(3*16) = phi(3)*phi(16) = 2*8 = 2^4.
a(167) = 370517977 with gcd(167, 370517977) = 1 and phi(167*370517977) = phi(167)*phi(370517977) = 166*370517976 = 61505984016 = 498^4.
		

Crossrefs

Programs

  • Mathematica
    QQ[n_]:=QQ[n]=IntegerQ[n^(1/4)];
    phi[n_]:=phi[n]=EulerPhi[n];
    tab={};Do[m=0;Label[aa];m=m+1;If[GCD[m,n]==1&&QQ[phi[m]*phi[n]],tab=Append[tab,m],Goto[aa]],{n,1,60}];tab
  • PARI
    a(n) = my(m=1,e=eulerphi(n)); while (!((gcd(n, m) == 1) && ispower(e*eulerphi(m), 4)), m++); m; \\ Michel Marcus, Apr 25 2020

A360944 Numbers m such that phi(m) is a triangular number, where phi is the Euler totient function (A000010).

Original entry on oeis.org

1, 2, 7, 9, 11, 14, 18, 22, 29, 37, 57, 58, 63, 67, 74, 76, 79, 108, 114, 126, 134, 137, 143, 155, 158, 175, 183, 191, 211, 225, 231, 244, 248, 274, 277, 286, 308, 310, 329, 341, 350, 366, 372, 379, 382, 396, 417, 422, 423, 450, 453, 462, 554, 556, 604, 623, 631, 658, 682
Offset: 1

Views

Author

Bernard Schott, Feb 26 2023

Keywords

Comments

Subsequence of primes is A055469 because in this case phi(k(k+1)/2+1) = k(k+1)/2.
Subsequence of triangular numbers is A287472.

Examples

			phi(57) = 36 = 8*9/2, a triangular number; so 57 is a term of the sequence.
		

Crossrefs

Similar, but with phi(m) is: A039770 (square), A078164 (biquadrate), A096503 (repdigit), A117296 (palindrome), A236386 (oblong).

Programs

  • Maple
    filter := m ->  issqr(1 + 8*numtheory:-phi(m)) : select(filter, [$(1 .. 700)]);
  • Mathematica
    Select[Range[700], IntegerQ[Sqrt[8 * EulerPhi[#] + 1]] &] (* Amiram Eldar, Feb 27 2023 *)
  • PARI
    isok(m) = ispolygonal(eulerphi(m), 3); \\ Michel Marcus, Feb 27 2023
    
  • Python
    from itertools import islice, count
    from sympy.ntheory.primetest import is_square
    from sympy import totient
    def A360944_gen(startvalue=1): # generator of terms >= startvalue
        return filter(lambda n:is_square((totient(n)<<3)+1), count(max(1,startvalue)))
    A360944_list = list(islice(A360944_gen(),20)) # Chai Wah Wu, Feb 28 2023

A054756 Numbers k such that phi(k) and cototient(k) are squares but k is not in A054755.

Original entry on oeis.org

1, 468, 1417, 1872, 2340, 3145, 4100, 4212, 7488, 9360, 14841, 15588, 16400, 16848, 20329, 21060, 29952, 31417, 37440, 37908, 45097, 49833, 58500, 62352, 63529, 63945, 65600, 67392, 69700, 78625, 79092, 83569, 84169, 84240, 88929, 102500
Offset: 1

Views

Author

Labos Elemer, Apr 25 2000

Keywords

Examples

			An even term is 2340 = 4*9*5*13 (phi = 576 = 24^2 and cototient = 1764 =  42^2).
An odd term is 14841 = 9*17*97 (phi = 9216 = 96^2, cototient = 5625 = 75^2).
		

Crossrefs

Equals A054754 \setminus A054755. See also A063752.

Programs

  • Mathematica
    Select[ Range[ 1, 200000 ], IntegerQ[ Sqrt[ eu[ # ] ] ]&& IntegerQ[ Sqrt[ co[ # ] ] ]&&!Equal[ lfi[ # ], 1 ]& ], where eu[ x_ ] =EulerPhi[ x ], co[ x_ ]=x-EulerPhi[ x ] and lfi[ x_ ]=Length[ FactorInteger[ x ] ]

Formula

phi(a(n)) = x^2, a(n) - phi(a(n)) = y^2, a(n) is not an odd power of prime from A002496.

A114573 Numbers k such that phi(k) is a perfect 11th power.

Original entry on oeis.org

1, 2, 3855, 4096, 4112, 4352, 5120, 5140, 5440, 6144, 6168, 6528, 7680, 7710, 8160, 5570645, 8388608, 8388736, 8421376, 8912896, 8913032, 8947712, 10485760, 10485920, 10526720, 11141120, 11141290, 11184640, 12582912, 12583104
Offset: 1

Views

Author

Stefan Steinerberger, Feb 17 2006

Keywords

Comments

Given the fact that phi(n) > sqrt(n) for all n except n=2 and n=6 we can see that every 11th power does appear as value only a finite number of times. What bounds on the density of this sequence can be proved?

Examples

			phi(4096) = 2048 = 2^11.
		

Crossrefs

Cf. A039770 (square), A039771 (cube), A078164 (4th), A078165 (5th), A078166 (6th), A078167 (7th), A078168 (8th), A078169 (9th), A078170 (10th power), A000010.

Programs

  • Mathematica
    For[n = 1, n < 100000, n++, If[EulerPhi[n]^(1/11) == Floor[EulerPhi[n]^(1/11)], Print[n]]]

Extensions

More terms from Stefan Steinerberger, May 16 2007

A245199 Numbers n where phi(n) and tau(n) are perfect squares.

Original entry on oeis.org

1, 8, 10, 34, 57, 74, 85, 125, 185, 202, 219, 394, 451, 456, 489, 505, 514, 546, 570, 629, 640, 679, 680, 802, 985, 1000, 1026, 1057, 1154, 1285, 1354, 1365, 1387, 1417, 1480, 1717, 1752, 1938, 2005, 2016, 2047, 2176, 2190, 2340, 2457, 2509, 2565, 2594, 2649
Offset: 1

Views

Author

Reinhard Muehlfeld, Jul 13 2014

Keywords

Comments

Numbers n such that A000005(n) and A000010(n) are perfect squares.
Intersection of A036436 and A039770. - Michel Marcus, Jul 15 2014

Examples

			8 is in the sequence because phi(8) = 4, tau(8) = 4, and 4 is a perfect square.
12 is not in the sequence because tau(12) = 6 is not a square.
		

Crossrefs

Programs

  • Maple
    filter:= proc(n) uses numtheory; issqr(phi(n)) and issqr(tau(n)) end proc:
    select(filter, [$1..1000]); # Robert Israel, Jul 27 2014
  • Mathematica
    fQ[n_] := IntegerQ@ Sqrt@ EulerPhi[n] && IntegerQ@ Sqrt@ DivisorSigma[0, n]; Select[ Range@ 3000, fQ] (* Robert G. Wilson v, Jul 21 2014 *)
    Select[Range[3000],AllTrue[{Sqrt[EulerPhi[#]],Sqrt[DivisorSigma[0, #]]}, IntegerQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Apr 01 2018 *)
  • PARI
    isok(n) = issquare(numdiv(n)) && issquare(eulerphi(n)); \\ Michel Marcus, Jul 15 2014
    
  • Python
    from sympy import totient, divisor_count
    from gmpy2 import is_square
    [n for n in range(1,10**4) if is_square(int(divisor_count(n))) and is_square(int(totient(n)))] # Chai Wah Wu, Aug 04 2014

A280986 Least k > 0 such that (k*n)^2 is in A002202, or 0 if no such k exists.

Original entry on oeis.org

1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 4, 1, 2, 1, 2, 1, 4, 1, 6, 1, 2, 2, 8, 1, 2, 1, 2, 1, 4, 1, 4, 1, 2, 2, 2, 1, 2, 3, 4, 1, 6, 1, 10, 1, 2, 4, 2, 1, 4, 1, 4, 1, 8, 1, 2, 1, 2, 2, 4, 1, 12, 2, 2, 1, 2, 1, 2, 1, 4, 1, 4, 1, 2, 1, 2, 3, 4, 2, 6, 1, 2, 3, 8, 1, 2, 5, 2, 1, 6, 1, 4, 2, 2, 1, 4, 1, 8, 2, 2, 1
Offset: 1

Views

Author

Altug Alkan, Jan 12 2017

Keywords

Comments

Pollack and Pomerance showed that almost all squares are missing from the range of Euler's totient function.

Examples

			a(11) = 4 because (k*11)^2 is not in A002202 for 0 < k < 4 and (4*11)^2 is in A002202.
a(95911) = 56 because (k*95911)^2 is not in A002202 for 0 < k < 56 and (56*95911)^2 is in A002202.
		

Crossrefs

Programs

  • PARI
    a(n) = {my(k = 1); while (!istotient((k*n)^2), k++); k; }

A216452 The fourth roots of the fourth powers arising in A078164.

Original entry on oeis.org

1, 1, 2, 2, 2, 2, 2, 2, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 8, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 8, 8, 8, 8, 8, 8, 10, 8, 8, 8, 10, 8, 10, 8, 8, 8, 10, 10, 10, 12, 12, 12, 12, 10, 12
Offset: 1

Views

Author

V. Raman, Sep 07 2012

Keywords

Crossrefs

A385822 Numbers k such that phi(k) is not a perfect square.

Original entry on oeis.org

3, 4, 6, 7, 9, 11, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 33, 35, 36, 38, 39, 41, 42, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 54, 55, 56, 58, 59, 61, 62, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 75, 77, 78, 79, 80, 81, 82, 83, 84, 86, 87, 88, 89
Offset: 1

Views

Author

Aidan Chen, Aug 11 2025

Keywords

Examples

			Since phi(35) = 24 and there is no integer n such that n^2 = 24.
		

Crossrefs

Cf. A000010. Complement of A039770.

Programs

  • Mathematica
    Select[Range[100], !IntegerQ[Sqrt[EulerPhi[#]]] &] (* Amiram Eldar, Aug 18 2025 *)
  • PARI
    isok(k) = !issquare(eulerphi(k)); \\ Michel Marcus, Aug 18 2025
  • Python
    from math import isqrt
    from sympy import totient as phi
    def ok(n): return isqrt(p:=phi(n))**2 != p
    print([k for k in range(1, 110) if ok(k)]) # Michael S. Branicky, Aug 17 2025
    
Previous Showing 31-39 of 39 results.