cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 32 results. Next

A140378 Lengths of runs of consecutive primes and nonprimes in A007775.

Original entry on oeis.org

1, 12, 1, 6, 1, 3, 1, 6, 2, 2, 1, 2, 1, 3, 1, 2, 1, 3, 1, 4, 2, 1, 2, 6, 1, 1, 1, 1, 1, 6, 2, 1, 2, 4, 3, 2, 2, 4, 1, 1, 1, 1, 1, 3, 1, 2, 2, 1, 1, 2, 1, 2, 1, 3, 1, 4, 2, 1, 1, 2, 2, 3, 2, 2, 4, 2, 2, 1, 1, 4, 2, 1, 1, 4, 1, 3, 2, 1, 1, 3, 1, 3, 2, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 3, 2, 2, 2
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Jun 13 2008

Keywords

Comments

Primes can be classified according to their remainder modulo 30: remainder 1 (A136066), 7 (A132231), 11 (A132232), 13 (A132233), 17 (A039949), 19 (A132234), 23 (A132235), or 29 (A132236). In the sequence A007775 of all numbers (prime or nonprime) in any of these remainder classes, we look for runs of numbers that are successively prime or nonprime and place the lengths of these runs in this sequence.

Examples

			Groups of runs in A007775 are (1), (7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47), (49), (53, 59, 61, 67, 71, 73), (77), (79, 83,...), which is 1 nonprime followed by 12 primes followed by 1 nonprime followed by 6 primes etc.
		

Crossrefs

Programs

  • Maple
    A007775 := proc(n) option remember ; local a; if n = 1 then 1; else for a from A007775(n-1)+1 do if a mod 2 <>0 and a mod 3 <>0 and a mod 5 <> 0 then RETURN(a) ; fi ; od: fi ; end: A := proc() local al,isp,n; al := 0: isp := false ; n := 1: while n< 300 do a := A007775(n) ; if isprime(a) <> isp then printf("%d,",al) ; al := 1; isp := not isp ; else al := al+1 ; fi ; n := n+1: od: end: A() ; # R. J. Mathar, Jun 16 2008

Extensions

Edited by R. J. Mathar, Jun 16 2008

A140533 Primes congruent to 13 or 17 mod 30.

Original entry on oeis.org

13, 17, 43, 47, 73, 103, 107, 137, 163, 167, 193, 197, 223, 227, 257, 283, 313, 317, 347, 373, 433, 463, 467, 523, 557, 587, 613, 617, 643, 647, 673, 677, 733, 797, 823, 827, 853, 857, 883, 887, 947, 977, 1033, 1063, 1093, 1097, 1123, 1153, 1187, 1213, 1217
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Jul 28 2008

Keywords

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(3000)|p mod 30 in {13,17}]; // Vincenzo Librandi, Dec 18 2010
  • Maple
    A140533 := proc(n) local a; if n = 1 then 13; else a := nextprime(procname(n-1)) ; while not a mod 30 in {13,17} do a := nextprime(a) ; end do: return a; end if; end: seq(A140533(n),n=1..80) ; # R. J. Mathar, Oct 22 2009
  • Mathematica
    Select[Prime[Range[300]],MemberQ[{13,17},Mod[#,30]]&] (* Vincenzo Librandi, Aug 15 2012 *)

A229947 Primes congruent to {1, 11, 13, 17, 19, 29} mod 30.

Original entry on oeis.org

11, 13, 17, 19, 29, 31, 41, 43, 47, 59, 61, 71, 73, 79, 89, 101, 103, 107, 109, 131, 137, 139, 149, 151, 163, 167, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 239, 241, 251, 257, 269, 271, 281, 283, 311, 313, 317, 331, 347, 349, 359, 373, 379, 389
Offset: 1

Views

Author

Omar E. Pol, Oct 27 2013

Keywords

Comments

For twin primes congruent to {1, 11, 13, 17, 19, 29} mod 30 see A132247.
Complement of A132237, primes congruent to 7 or 23 (mod 30), in the set of primes > 5. - M. F. Hasler, Nov 02 2013

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(500) | p mod 30 in {1,11,13,17, 19,29} ]; // Vincenzo Librandi, Apr 05 2015
  • Mathematica
    Select[Flatten[Table[30n + {1, 11, 13, 17, 19, 29}, {n, 0, 11}]], PrimeQ] (* Alonso del Arte, Nov 01 2013 *)
    Select[Prime@Range[100], MemberQ[{1, 11, 13, 17, 19, 29}, Mod[#, 30]] &] (* Vincenzo Librandi, Apr 05 2015 *)
  • PARI
    is(n)=isprime(n) && setsearch([1,11,13,17,19,29], n%30) \\ Charles R Greathouse IV, Mar 08 2015
    

Formula

a(n) ~ 4/3 n log n. - Charles R Greathouse IV, Mar 08 2015

A132239 Primes congruent to {17, 19} mod 30.

Original entry on oeis.org

17, 19, 47, 79, 107, 109, 137, 139, 167, 197, 199, 227, 229, 257, 317, 347, 349, 379, 409, 439, 467, 499, 557, 587, 617, 619, 647, 677, 709, 739, 769, 797, 827, 829, 857, 859, 887, 919, 947, 977, 1009, 1039, 1069, 1097, 1129, 1187
Offset: 1

Views

Author

Omar E. Pol, Aug 15 2007

Keywords

Crossrefs

Programs

  • Magma
    [ p: p in PrimesUpTo(1300) | p mod 30 in {17, 19} ]; // Vincenzo Librandi, Aug 14 2012
  • Mathematica
    Select[Prime[Range[1000]],MemberQ[{17,19},Mod[#,30]]&] (* Vincenzo Librandi, Aug 14 2012 *)

A132246 Twin primes congruent to {1, 17, 19, 29} mod 30.

Original entry on oeis.org

17, 19, 29, 31, 59, 61, 107, 109, 137, 139, 149, 151, 179, 181, 197, 199, 227, 229, 239, 241, 269, 271, 347, 349, 419, 421, 569, 571, 599, 601, 617, 619, 659, 661, 809, 811, 827, 829, 857, 859, 1019, 1021, 1049, 1051, 1229, 1231
Offset: 1

Views

Author

Omar E. Pol, Aug 17 2007

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Union[Flatten[Select[Partition[Prime[Range[300]],2,1],#[[2]]- #[[1]] == 2&]]],MemberQ[{1,17,19,29},Mod[#,30]]&] (* Harvey P. Dale, Feb 09 2015 *)

A220081 Primes of the form 15*k^2 - 15*k + 17.

Original entry on oeis.org

17, 47, 107, 197, 317, 467, 647, 857, 1097, 1367, 1667, 1997, 2357, 3167, 3617, 5147, 5717, 6317, 6947, 7607, 8297, 9767, 12197, 13967, 14897, 18917, 19997, 21107, 22247, 23417, 25847, 27107, 29717, 33857, 36767, 41357, 51347, 53117, 54917, 56747, 60497
Offset: 1

Views

Author

Vincenzo Librandi, Dec 17 2012

Keywords

Comments

The formula gives consecutive primes for k from 0 to 13.

Crossrefs

Subsequence of A030432, A039949, A141860.

Programs

  • Magma
    [a: n in [1..100] | IsPrime(a) where a is 15*n^2 - 15*n + 17 ];
  • Mathematica
    Select[Table[15 n^2 - 15 n + 17, {n, 1, 100}], PrimeQ]

A245568 Initial members of prime quadruples (n, n+2, n+24, n+26).

Original entry on oeis.org

5, 17, 617, 857, 1277, 1427, 1697, 2087, 2687, 3557, 4217, 5417, 5477, 7307, 8837, 9437, 10067, 13877, 17657, 18287, 20747, 21587, 23537, 25577, 27917, 28547, 30467, 32117, 32297, 35507, 37337, 37547, 40127, 41177, 41387, 41957
Offset: 1

Views

Author

Karl V. Keller, Jr., Jan 09 2015

Keywords

Comments

This sequence is prime n, where there exist two twin prime pairs of (n, n+2, n+24, n+26).
Excluding 5, this is a subsequence of each of the following: A128468 (a(n) = 30*n + 17), A039949 (Primes of the form 30n-13), A181605 (twin primes ending in 7).
A253624 is a subsequence of this sequence.

Examples

			For n = 17, the numbers 17, 19, 41, 43 are primes.
		

Crossrefs

Cf. A077800 (twin primes), A128468, A039949, A181605, A253624.

Programs

  • Mathematica
    a245568[n_] := Select[Prime@ Range@ n, And[PrimeQ[# + 2], PrimeQ[# + 24], PrimeQ[# + 26]] &]; a245568[5000] (* Michael De Vlieger, Jan 11 2015 *)
  • Python
    from sympy import isprime
    for n in range(1,10000001,2):
      if isprime(n) and isprime(n+2) and isprime(n+24) and isprime(n+26): print(n,end=', ')

A248474 Numbers congruent to 13 or 17 mod 30.

Original entry on oeis.org

13, 17, 43, 47, 73, 77, 103, 107, 133, 137, 163, 167, 193, 197, 223, 227, 253, 257, 283, 287, 313, 317, 343, 347, 373, 377, 403, 407, 433, 437, 463, 467, 493, 497, 523, 527, 553, 557, 583, 587, 613, 617, 643, 647, 673, 677, 703, 707, 733, 737, 763, 767, 793, 797
Offset: 1

Views

Author

Karl V. Keller, Jr., Oct 06 2014

Keywords

Comments

The combination of A082369(30*n+13) and A128468(30*n+17) is the base sequence for A140533(Primes congruent to 13 or 17 mod 30).

Crossrefs

Cf. A082369 (30*n+13), A128468 (30*n+17).
Cf. A039949 (Primes of the form 30n-13), A132233 (Primes congruent to 13 mod 30), A140533 (Primes congruent to 13 or 17 mod 30).

Programs

  • Mathematica
    Flatten[Table[{15n - 2, 15n + 2}, {n, 1, 41, 2}]] (* Alonso del Arte, Oct 06 2014 *)
  • PARI
    Vec(x*(13*x^2+4*x+13)/((x-1)^2*(x+1)) + O(x^100)) \\ Colin Barker, Oct 07 2014
  • Python
    for n in range(1,101):
      print (n*30-17),
      print (n*30-13),
    

Formula

From Colin Barker, Oct 07 2014: (Start)
a(n) = (-15-11*(-1)^n+30*n)/2.
a(n) = a(n-1)+a(n-2)-a(n-3).
G.f.: x*(13*x^2+4*x+13) / ((x-1)^2*(x+1)). (End)
E.g.f.: 13 + ((30*x - 15)*exp(x) - 11*exp(-x))/2. - David Lovler, Sep 10 2022
Sum_{n>=1} (-1)^(n+1)/a(n) = (sqrt(2*(5+sqrt(5)))+sqrt(3)-sqrt(15))*Pi / (30*(sqrt(6*(5+sqrt(5)))+sqrt(5)-1)). - Amiram Eldar, Jul 30 2024

A248523 Initial members of prime quadruples (n, n+2, n+144, n+146).

Original entry on oeis.org

5, 137, 1787, 1997, 2237, 2657, 3527, 4127, 4337, 4787, 8087, 12107, 13757, 14447, 17987, 19697, 21377, 23057, 23687, 31247, 32297, 34157, 34367, 35447, 37547, 38567, 39227, 43397, 48677, 51197, 51827, 53087, 58907, 65027, 65837
Offset: 1

Views

Author

Karl V. Keller, Jr., Jan 11 2015

Keywords

Comments

This sequence is prime n, where there exist two twin prime pairs of (n,n+2), (n+144,n+146).
Excluding 5, this is a subsequence of each of the following: A128468 (a(n)=30*n+17), A039949 (Primes of the form 30n-13), A181605 (twin primes ending in 7).

Examples

			For n=137, the numbers 137, 139, 281, 283, are primes.
		

Crossrefs

Cf. A077800 (twin primes), A128468, A039949, A181605.

Programs

  • Python
    from sympy import isprime
    for n in range(1,10000001,2):
        if isprime(n) and isprime(n+2) and isprime(n+144) and isprime(n+146): print(n,end=', ')

A248661 Initial members of prime quadruples (n, n+2, n+54, n+56).

Original entry on oeis.org

5, 17, 137, 227, 827, 1427, 1667, 1877, 2027, 2087, 2657, 3527, 3767, 4217, 4967, 10037, 11117, 11777, 12107, 13877, 17987, 19697, 20717, 21557, 22037, 23687, 24977, 27527, 27737, 34157, 37307, 41177, 42017, 42407, 47657, 48677
Offset: 1

Views

Author

Karl V. Keller, Jr., Jan 11 2015

Keywords

Comments

This sequence is prime n, where there exist two twin prime pairs of (n,n+2), (n+54,n+56).
Excluding 5, this is a subsequence of each of the following: A128468 (a(n)=30*n+17), A039949 (primes, 30n-13), A181605 (twin primes, end 7), and A092340 (prime n, where n^2+2*n divides (fibonacci(n^2)+fibonacci(2*n))).

Examples

			For n=17, the numbers 17, 19, 71, 73, are primes.
		

Crossrefs

Cf. A077800 (twin primes), A128468, A039949, A181605, A092340.

Programs

  • Python
    from sympy import isprime
    for n in range(1,10000001,2):
      if isprime(n) and isprime(n+2) and isprime(n+54) and isprime(n+56): print(n,end=', ')
Previous Showing 21-30 of 32 results. Next