cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A322828 a(n) is the concatenation of n and pi(n).

Original entry on oeis.org

10, 21, 32, 42, 53, 63, 74, 84, 94, 104, 115, 125, 136, 146, 156, 166, 177, 187, 198, 208, 218, 228, 239, 249, 259, 269, 279, 289, 2910, 3010, 3111, 3211, 3311, 3411, 3511, 3611, 3712, 3812, 3912, 4012, 4113, 4213, 4314, 4414, 4514, 4614, 4715, 4815, 4915, 5015, 5115
Offset: 1

Views

Author

G. L. Honaker, Jr., Dec 26 2018

Keywords

Examples

			a(5) = 53 because if n=5 then pi(5)=3, therefore concatenation gives 53.
		

Crossrefs

Programs

  • Maple
    a:= n-> parse(cat(n, numtheory[pi](n))):
    seq(a(n), n=1..60);  # Alois P. Heinz, Dec 28 2018
  • PARI
    a(n) = eval(concat(Str(n), Str(primepi(n)))); \\ Michel Marcus, Dec 29 2018

A139113 Concatenation of n and n-th Fibonacci number.

Original entry on oeis.org

11, 21, 32, 43, 55, 68, 713, 821, 934, 1055, 1189, 12144, 13233, 14377, 15610, 16987, 171597, 182584, 194181, 206765, 2110946, 2217711, 2328657, 2446368, 2575025, 26121393, 27196418, 28317811, 29514229, 30832040, 311346269, 322178309
Offset: 1

Views

Author

Omar E. Pol, Apr 09 2008

Keywords

Crossrefs

Programs

  • Mathematica
    Table[FromDigits[Join[IntegerDigits[n],IntegerDigits[Fibonacci[n]]]],{n,40}] (* Harvey P. Dale, Dec 31 2015 *)

A154966 Primes p such that the concatenation of p and prime(p) is composite.

Original entry on oeis.org

3, 5, 7, 11, 13, 19, 29, 31, 37, 43, 47, 53, 59, 67, 73, 79, 89, 97, 101, 103, 107, 109, 113, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Jan 18 2009

Keywords

Examples

			The concatenation of prime 3 and the third prime, 5, is the composite 35, hence 3 is in the sequence.
The concatenation of prime 29 and the 29th prime, 109, is the composite 29109 = 3*31*313, hence 29 is in the sequence.
		

Crossrefs

Cf. A000040 (primes), A002808 (composites), A045532.

Programs

  • Magma
    [ p: p in PrimesUpTo(320) | not IsPrime(StringToInteger(IntegerToString(p) cat IntegerToString(NthPrime(p)))) ];
  • Mathematica
    Select[Prime[Range[80]],CompositeQ[FromDigits[Flatten[IntegerDigits[ {#,Prime[ #]}]]]]&] (* Harvey P. Dale, Jan 07 2016 *)

Extensions

Edited and extended beyond a(6) by Klaus Brockhaus, Jan 20 2009
Previous Showing 11-13 of 13 results.