cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A260821 Least positive integer k for which n*2^(2^k) + 1 is composite.

Original entry on oeis.org

5, 1, 2, 2, 1, 1, 3, 1, 2, 2, 1, 1, 2, 1, 3, 1, 1, 2, 1, 1, 1, 3, 1, 2, 3, 1, 3, 3, 1, 1, 1, 1, 1, 2, 1, 1, 5, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 4, 2, 1, 1, 1, 1, 1, 1, 1, 2, 3, 1, 2, 1, 1, 1, 2, 1, 1, 2, 1, 2, 2, 1, 1, 2, 1, 1, 1, 1, 3, 2, 1, 1, 1, 1, 2, 1, 1, 2
Offset: 1

Views

Author

Marco RipĂ , Jul 31 2015

Keywords

Comments

a(n) = 1 for nonzero n in A045751. - Michel Marcus, Aug 01 2015

Examples

			a(7)=3 because 7*2^2 + 1 = 29 is prime and 7*2^(2^2) + 1 = 113 is also prime, while 7*2^(2^3) + 1 = 11*163.
		

Crossrefs

Programs

  • Mathematica
    A260821[n_] := Module[{k = 0}, While[PrimeQ[n*2^(2^++k) + 1]]; k];
    Array[A260821, 100] (* Paolo Xausa, Jan 31 2024 *)
  • PARI
    a(n) = {k = 1; while (isprime(n*2^2^k+1), k++); k;} \\ Michel Marcus, Aug 01 2015

Extensions

More terms from Michel Marcus, Aug 01 2015

A107615 Coefficient list length of Poincaré-like polynomials made from A047845, indices of 4*n+1 nonprimes as the m(i) exponents.

Original entry on oeis.org

1, 2, 7, 18, 31, 48, 71, 96, 125, 158, 193, 232, 273, 316, 363, 416, 475, 536, 599, 664, 731, 802, 875, 952, 1033, 1116, 1201, 1290, 1383, 1478, 1579
Offset: 1

Views

Author

Roger L. Bagula, May 16 2007

Keywords

Crossrefs

Cf. A045751.

Programs

  • Mathematica
    a = Flatten[Table[If[PrimeQ[4*n + 1] == False, n, {}], {n, 0, 50}]]; Table[Length[CoefficientList[Product[1 + t^(2*a[[n]] + 1), {n, 1, m}], t]], { m, 0, Length[a]}]

Formula

P(m) = Product[1 + t^(2*A045751(n) + 1), {n, 1, m}] a(n) = Length[CoefficientList[P(n),x]].

A217707 Numbers n such that both 4*n-1 and 4*n+1 are composite.

Original entry on oeis.org

14, 16, 19, 23, 29, 30, 31, 36, 40, 44, 46, 47, 51, 52, 54, 55, 59, 61, 62, 65, 72, 74, 75, 76, 80, 81, 82, 85, 86, 89, 91, 94, 98, 101, 103, 104, 106, 107, 109, 113, 118, 119, 121, 124, 128, 129, 132, 133, 134, 136, 138, 140, 145, 146, 149, 151, 156, 157, 159
Offset: 1

Views

Author

Jayanta Basu, Mar 20 2013

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[200], ! PrimeQ[4 # - 1] && ! PrimeQ[4 # + 1] &]
    Select[Range[200],AllTrue[4#+{1,-1},CompositeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Aug 11 2015 *)
Previous Showing 11-13 of 13 results.