cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 35 results. Next

A316506 a(n) is the rank of the multiplicative group of Gaussian integers modulo n.

Original entry on oeis.org

0, 1, 1, 2, 2, 2, 1, 3, 2, 3, 1, 3, 2, 2, 3, 3, 2, 2, 1, 4, 2, 2, 1, 4, 2, 3, 2, 3, 2, 4, 1, 3, 2, 3, 3, 3, 2, 2, 3, 5, 2, 3, 1, 3, 3, 2, 1, 4, 2, 3, 3, 4, 2, 2, 3, 4, 2, 3, 1, 5, 2, 2, 3, 3, 4, 3, 1, 4, 2, 4, 1, 4, 2, 3, 3, 3, 2, 4, 1, 5, 2, 3, 1, 4, 4, 2, 3
Offset: 1

Views

Author

Jianing Song, Jul 05 2018

Keywords

Comments

The rank of a finitely generated group rank(G) is defined to be the size of the minimal generating sets of G.
Let p be an odd prime and (Z[i]/nZ[i])* be the multiplicative group of Gaussian integers modulo n, then: (Z[i]/p^e*Z[i])* = (C_((p-1)*p^(e-1)))^2 if p == 1 (mod 4); C_(p^(e-1)) X C_(p^(e-1)*(p^2-1)) if p == 3 (mod 4). (Z[i]/2Z[i])* = C_2, (Z[i]/2^e*Z[i])* = C_4 X C_(2^(e-2)) X C_(2^(e-1)) for e >= 2. If n = Product_{i=1..k} (p_i)^(e_i), then (Z[i]/nZ[i])* = (Z[i]/(p_1)^(e_1)*Z[i])* X (Z[i]/(p_2)^(e_2)*Z[i])* X ... X (Z[i]/(p_k)^(e_k)*Z[i])*.
The order of (Z[i]/nZ[i])* is A079458(n) and the exponent of it is A227334(n).
{a(n)} is not additive: (Z[i]/2Z[i])* = C_2, (Z[i]/9Z[i])* = C_3 X C_24, so (Z[i]/18Z[i])* = C_6 X C_24, a(18) < a(2) + a(9). The same problem occurs for a(36), a(54) and a(72) and so on. But note that (Z[i]/63Z[i])* = C_3 X C_24 X C_48 and a(63) = a(7) + a(9).
A079458(n)/A227334(n) is always an integer, and is 1 if and only if (Z[i]/nZ[i])* is cyclic, that is, rank((Z[i]/nZ[i])*) = a(n) = 0 or 1, and n has a primitive root in (Z[i]/nZ[i])*. a(n) = 1 if and only if n = 2 or a prime congruent to 3 mod 4. - Jianing Song, Jan 08 2019
From Jianing Song, Oct 03 2022: (Start)
More generally, let pi be a prime element of Z[i] of norm p or p^2 for prime p, then:
- for p == 1 (mod 4), (Z[i]/(pi^e)Z[i])* = C_((p-1)*p^(e-1));
- for p == 3 (mod 4), (Z[i]/(pi^e)Z[i])* = C_(p^(e-1)) X C_(p^(e-1)*(p^2-1));
- for p = 2, (Z[i]/(pi^e)Z[i])* = C_1 for e = 1, C_2 for e = 2, C_4 X C_(2^floor((e-3)/2)) X C_(2^ceiling((e-3)/2)) for e >= 3.
For a more general result see my link below. (End)

Examples

			(Z[i]/1Z[i])* = C_1 (has rank 0);
(Z[i]/2Z[i])* = C_2 (has rank 1);
(Z[i]/3Z[i])* = C_8 (has rank 1);
(Z[i]/4Z[i])* = C_2 X C_4 (has rank 2);
(Z[i]/5Z[i])* = C_4 X C_4 (has rank 2);
(Z[i]/6Z[i])* = C_2 X C_8 (has rank 2);
(Z[i]/7Z[i])* = C_48 (has rank 1);
(Z[i]/8Z[i])* = C_2 X C_4 X C_4 (has rank 3);
(Z[i]/9Z[i])* = C_3 X C_24 (has rank 2);
(Z[i]/10Z[i])* = C_2 X C_4 X C_4 (has rank 3).
		

Crossrefs

Equivalent in the ring of Eisenstein integers: A319447.

Programs

  • PARI
    rad(n) = factorback(factorint(n)[, 1]);
    grad(n)=
    {
        my(r=1, f=factor(n));
        for(j=1, #f[, 1], my(p=f[j, 1], e=f[j, 2]);
            if(p==2&e==1, r*=2);
            if(p==2&e==2, r*=4);
            if(p==2&e>=3, r*=8);
            if(p%4==1, r*=(rad(p-1))^2);
            if(p%4==3&e==1, r*=rad(p^2-1));
            if(p%4==3&e>=2, r*=p^2*rad(p^2-1));
        );
        return(r);
    }
    a(n)=if(n>1, vecmax(factor(grad(n))[, 2]), 0);

Formula

Let p be an odd prime, then: a(p^e) = 2 if p == 1 (mod 4) or p == 3 (mod 4), e >= 2; a(p) = 1 if p == 3 (mod 4). a(2) = 1, a(4) = 2, a(2^e) = 3 for e >= 3.

A319447 a(n) is the rank of the multiplicative group of Eisenstein integers modulo n.

Original entry on oeis.org

0, 1, 1, 2, 1, 2, 2, 3, 3, 2, 1, 3, 2, 3, 2, 3, 1, 4, 2, 3, 3, 2, 1, 4, 2, 3, 3, 4, 1, 3, 2, 3, 2, 2, 3, 4, 2, 3, 3, 4, 1, 4, 2, 3, 4, 2, 1, 4, 2, 2, 2, 4, 1, 4, 2, 5, 3, 2, 1, 4, 2, 3, 5, 3, 3, 3, 2, 3, 2, 4, 1, 4, 2, 3, 2, 4, 3, 4, 2, 4, 3, 2, 1, 5, 2, 3, 2
Offset: 1

Views

Author

Jianing Song, Sep 19 2018

Keywords

Comments

The rank of a finitely generated group rank(G) is defined to be the size of the minimal generating sets of G.
Let p be an odd prime and (Z[w]/nZ[w])* be the multiplicative group of Gaussian integers modulo n, then: (Z[w]/p^e*Z[w])* = (C_((p-1)*p^(e-1)))^2 if p == 1 (mod 6); C_(p^(e-1)) X C_(p^(e-1)*(p^2-1)) if p == 5 (mod 6); (Z[w]/3^e*Z[w])* = C_3 X C_(3^(e-1)) X C_(2*3^(e-1)); (Z[w]/2Z[w])* = C_3, (Z[w]/2^e*Z[w])* = C_2 X C_(2^(e-2)) X C_(3*2^(e-1)) for e >= 2. If n = Product_{i=1..k} (p_i)^(e_i), then (Z[w]/nZ[w])* = (Z[w]/(p_1)^(e_1)*Z[w])* X (Z[w]/(p_2)^(e_2)*Z[w])* X ... X (Z[w]/(p_k)^(e_k)*Z[w])*.
The order of (Z[w]/nZ[w])* is A319445(n) and the exponent of it is A319446(n).
{a(n)} is not additive: (Z[w]/2Z[w])* = C_3, (Z[w]/25Z[w])* = C_5 X C_120, so (Z[w]/50Z[w])* = C_15 X C_120, a(50) < a(2) + a(25).
A319445(n)/A319446(n) is always an integer, and is 1 if and only if (Z[w]/nZ[w])* is cyclic, that is, rank((Z[w]/nZ[w])*) = a(n) = 0 or 1, and n has a primitive root in (Z[w]/nZ[w])*. a(n) = 1 if and only if n = 3 or a prime congruent to 2 mod 3. - Jianing Song, Jan 08 2019
From Jianing Song, Oct 03 2022: (Start)
More generally, let pi be a prime element of Z[w] of norm p or p^2 for prime p, then:
- for p == 1 (mod 6), (Z[w]/(pi^e)Z[w])* = C_((p-1)*p^(e-1));
- for p == 5 (mod 6), (Z[w]/(pi^e)Z[w])* = C_(p^(e-1)) X C_(p^(e-1)*(p^2-1));
- for p = 3, (Z[w]/(pi^e)Z[w])* = C_2 for e = 1, C_3 X C_(3^floor((e-2)/2)) X C_(2*3^ceiling((e-2)/2)) for e >= 2;
- for p = 2, (Z[w]/(pi^e)Z[w])* = C_3 for e = 1, C_2 X C_(2^(e-2)) X C_(3*2^(e-1)) for e >= 2.
For a more general result see my link below. (End)

Examples

			(Z[w]/1Z[w])* = C_1 (has rank 0);
(Z[w]/2Z[w])* = C_3 (has rank 1);
(Z[w]/3Z[w])* = C_6 (has rank 1);
(Z[w]/4Z[w])* = C_2 X C_6 (has rank 2);
(Z[w]/5Z[w])* = C_24 (has rank 1);
(Z[w]/6Z[w])* = C_3 X C_6 (has rank 2);
(Z[w]/7Z[w])* = C_6 X C_6 (has rank 2);
(Z[w]/8Z[w])* = C_2 X C_2 X C_12 (has rank 3);
(Z[w]/9Z[w])* = C_3 X C_3 X C_6 (has rank 3);
(Z[w]/10Z[w])* = C_3 X C_24 (has rank 2).
		

Crossrefs

Equivalent in the ring of Gaussian integers: A316506.

Programs

  • PARI
    rad(n) = factorback(factorint(n)[, 1]);
    grad(n)=
    {
        my(r=1, f=factor(n));
        for(j=1, #f[, 1], my(p=f[j, 1], e=f[j, 2]);
            if(p==2&e==1, r*=3);
            if(p==2&e==2, r*=12);
            if(p==2&e>=3, r*=24);
            if(p==3&e==1, r*=6);
            if(p==3&e>=2, r*=54);
            if(p%6==1, r*=(rad(p-1))^2);
            if(p%6==5&e==1, r*=rad(p^2-1));
            if(p%6==5&e>=2, r*=p^2*rad(p^2-1));
        );
        return(r);
    }
    a(n)=if(n>1, vecmax(factor(grad(n))[, 2]), 0); \\ The program is based on the facts that although rank((Z[w]/nZ[w])*) is not additive, the p-rank of (Z[w]/nZ[w])* is additive for any prime p, and that rank((Z[w]/nZ[w])*) is the maximum of the p-rank of (Z[w]/nZ[w])* where p runs through all primes. - Jianing Song, Aug 05 2019

Formula

Let p be an odd prime, then: a(p^e) = 2 if p == 1 (mod 6) or p == 5 (mod 6), e >= 2; a(p) = 1 if p == 5 (mod 6). a(3) = 1, a(3^e) = 3 for e >= 2. a(2) = 1, a(4) = 2, a(2^e) = 3 for e >= 3. [Corrected by Jianing Song, Aug 05 2019]

Extensions

Corrected by Jianing Song, Jan 12 2019

A323739 a(n) is the number of residues modulo (4*primorial(n)) of the squares of primes greater than or equal to prime(n+1).

Original entry on oeis.org

2, 1, 1, 2, 6, 30, 180, 1440, 12960, 142560, 1995840, 29937600, 538876800, 10777536000, 226328256000, 5205549888000, 135344297088000, 3924984615552000, 117749538466560000, 3885734769396480000, 136000716928876800000, 4896025809439564800000, 190945006568143027200000
Offset: 0

Views

Author

Jon E. Schoenfield, Feb 20 2019

Keywords

Comments

Here, "primorial(n)" is A002110(n) = Product_{k=1..n} prime(k).
For n >= 1, a(n) is the number of coprime squares modulo 4*primorial(n). Note that 4*primorial(n) = A102476(n+1) is the smallest k such that rank((Z/kZ)*) = n+1 for n >= 1. (The rank of a finitely generated group rank(G) is defined to be the size of the minimal generating sets of G. In particular, rank((Z/kZ)*) = 0 if k <= 2 and A046072(k) otherwise.) - Jianing Song, Oct 18 2021

Examples

			a(3) = 2 because, for every prime p >= prime(3+1) = 7, p^2 mod (4*2*3*5 = 120) is one of the 2 values {1, 49}:
   7^2 mod 120 =  49 mod 120 = 49
  11^2 mod 120 = 121 mod 120 =  1
  13^2 mod 120 = 169 mod 120 = 49
  17^2 mod 120 = 289 mod 120 = 49
  19^2 mod 120 = 361 mod 120 =  1
  23^2 mod 120 = 529 mod 120 = 49
  29^2 mod 120 = 841 mod 120 =  1
  ...
.
   q=(n+1)st        b =          residues p^2 mod b
n    prime    4*primorial(n)         for p >= q         a(n)
=  =========  ===============  =======================  ====
0      2      4         =   4           {0,1}             2
1      3      4*2       =   8            {1}              1
2      5      4*2*3     =  24            {1}              1
3      7      4*2*3*5   = 120           {1,49}            2
4     11      4*2*3*5*7 = 840  {1,121,169,289,361,529}    6
		

Crossrefs

Programs

Formula

Conjecture: a(n) = 2^(1-n)*Product_{j=1..n} (prime(j)-1) for n >= 0, so a(n) = a(n-1)*(prime(n)-1)/2 for n >= 1.
From Charlie Neder, Feb 28 2019: (Start)
Conjecture is true. Since there exists a prime congruent to r modulo 4*primorial(n) for any r coprime to primorial(n), this set is precisely the set of coprime quadratic residues of 4*primorial(n). If n >= 1, each residue can be broken down into congruences modulo 8 and the first n-1 odd primes, each odd prime p has (p-1)/2 residue classes, and every combination eventually occurs, giving the formula. (End)

Extensions

More terms from Jianing Song, Oct 18 2021

A305236 Numbers n such that the multiplicative group of integers modulo n is isomorphic to C_m X C_m, m > 1.

Original entry on oeis.org

8, 12, 63, 126, 513, 1026, 2107, 4214, 12625, 25250, 26533, 39609, 53066, 79218, 355023, 710046, 3190833, 4457713, 6381666, 8915426, 19854847, 38463283, 39709694, 76926566, 242138449, 370634743, 484276898, 516465451, 574336561, 701607583, 741269486, 1032930902, 1148673122, 1380336193, 1403215166, 2324581983, 2760672386, 4649163966, 4882890625, 6174434113, 9765781250
Offset: 1

Views

Author

Jianing Song, Jun 19 2018

Keywords

Comments

Note that 24 is only number k such that the multiplicative group of integers modulo k is isomorphic to C_m X C_m X C_m, m > 1.
The number of elements in the multiplicative group of integers modulo a(n) of order d is A007434(d), whenever d is divisible by A002322(a(n)).
The corresponding m (=A002322(a(n))) are 2, 2, 6, 6, 18, 18, 42, 42, 100, 100, 156, 162, 156, 162, 486, 486, 1458, 2028, 1458, 2028, ... Each term in A114874, except for those of the form 2^k, k >= 2, occurs exactly twice in this list.
Numbers k such that A046072(k) = 2 and A316089(k) = 1. - Jianing Song, Sep 15 2018
Except for 8 and 12, these are numbers of the form p^e*((p-1)*p^(e-1) + 1) or 2*p^e*((p-1)*p^(e-1) + 1) where p is an odd prime and (p-1)*p^(e-1) + 1 is prime. - Jianing Song, Apr 13 2019

Examples

			The multiplicative group of integers modulo 63 is isomorphic to C_6 X C_6. There are A007434(1) = 1 element of order 1, A007434(2) = 3 elements of order 2, A007434(3) = 8 elements of order 3, A007434(6) = 24 elements of order 6 modulo 63.
The multiplicative group of integers modulo 513 is isomorphic to C_18 X C_18. There are A007434(1) = 1 element of order 1, A007434(2) = 3 elements of order 2, A007434(3) = 8 elements of order 3, A007434(6) = 24 elements of order 6, A007434(9) = 72 elements of order 9, A007434(18) = 216 elements of order 18 modulo 513.
		

Crossrefs

Cf. A114874.
Odd terms are given by A307527.

Programs

  • PARI
    for(n=1,10^7,if(#znstar(n)[2]==2 && znstar(n)[2][1]==znstar(n)[2][2], print1(n, ", "))) \\ Jianing Song, Sep 15 2018
    
  • PARI
    the_first_entries(nn) = my(u=[]); for(n=2, sqrt(nn), my(v=factor(n), d=#v[, 1], p=v[d, 1], e=v[d, 2]); if(isprime(n+1) && p!=2 && n==(p-1)*p^e, u=concat(u, [(n+1)*p^(e+1)]))); t=concat([8, 12], concat(u, 2*u)); t=vecsort(select(i->(iJianing Song, Apr 13 2019

Formula

A302257(a(n)) = A258615(a(n))/2.

Extensions

Missing a(40) inserted by Jianing Song, Apr 20 2019

A323021 A way to generate a minimal generating set of (Z/nZ)* whose elements are multiplicatively independent for every n: row n lists the elements of S(n), where S(n) is defined in the comment section. Here (Z/nZ)* is the multiplicative group of integers modulo n.

Original entry on oeis.org

2, 3, 2, 5, 3, 5, 7, 2, 7, 2, 5, 7, 2, 3, 7, 11, 5, 15, 3, 11, 2, 11, 17, 8, 10, 13, 5, 7, 13, 17, 2, 15, 2, 15, 17, 2, 7, 11, 3, 5, 31, 13, 23, 3, 22, 31, 19, 29, 2, 21, 14, 28, 17, 21, 31, 6, 29, 31, 3, 13, 23, 11, 37, 5, 5, 17, 31, 37, 3, 27, 35, 37, 27, 41
Offset: 3

Views

Author

Jianing Song, Jan 11 2019

Keywords

Comments

For any finite abelian multiplicative group G and a generating set (not necessarily minimal) S = {x_1, x_2, ..., x_m}, we say the elements in S are multiplicatively independent if Product_{i=1..m} (x_i)^(e_i) = o implies that (x_i)^(e_i) = o for i = 1..m", where o is the group identity. For example, let G = (Z/16Z)*, the elements in {3, 15} are multiplicatively independent, while the elements in {3, 5} are not because 3^2 * 5^2 == 1 (mod 16) but 3^2 == 5^2 == 9 (mod 16). - Jianing Song, Mar 16 2019
S(n) is defined as: S(p^e) = {the least primitive root modulo p^e} if p is an odd prime; S(2) = the empty set, S(4) = {3}, S(2^e) = {5, 2^e - 1} for e >= 3. If gcd(m_1, m_2) = 1, then S((m_1)*(m_2)) = {1 <= x <= (m_1)*(m_2) : x belongs to S(m_1) and x == 1 (mod m_2), or x belongs to S(m_2) and x == 1 (mod x_1)}. The reason we choose S(2^e) = {5, 2^e - 1} is that for n >= 3, 1, 5, 5^2, ..., 5^(2^(e-2)-1) are all elements in (Z/(2^e)Z)* that are congruent to 1 modulo 4 and their additive inverses are all elements that are congruent to 3 modulo 4.
Offset 3, because the generating set of (Z/1Z)* or (Z/2Z)* is the empty set. The length of the n-th row is A046072(n) for n >= 3.
We now show that S(n) is a generating set of (Z/nZ)* whose elements are multiplicatively independent by induction. According to A302257, we only need to show that for every n, S(n) = {x_1, x_2, ..., x_r} satisfies that a one-to-one mapping can be set between all products of the form Product_{i=1..r} (x_i)^(e_i) and the elements in (Z/nZ)*, where 0 <= e_i < ord(x_i,n) for 1 <= i <= r. Suppose gcd(m_1, m_2) = 1. Let S(m_1) = {x_1, x_2, ..., x_s}, S(m_2) = {y_1, y_2, ..., y_t}, then S((m_1)*(m_2)) = {x'1, x'_2, ..., x'_s, y'_1, y'_2, ..., y'_t} where x'_i == x_i (mod m_1), x'_i == 1 (mod m_2), y'_i == 1 (mod m_1), y'_i == y_i (mod m_2). For every a coprime to n, solving a == Product{i=1..s} (x'i)^(e_i) * Product{i=1..t} (y'i)^(f_i) (mod (m_1)*(m_2)) is equivalent to solving a == Product{i=1..s} (x'i)^(e_i) (mod m_1) and a == Product{i=1..s} (y'i)^(f_i) (mod m_2) separately, which are immediately reduced to a == Product{i=1..s} (x_i)^(e_i) (mod m_1) and a == Product_{i=1..s} (y_i)^(f_i) (mod m_2). Since the elements in S(m_1) are multiplicatively independent, the elements in S(m_2) are multiplicatively independent as well, hence the elements in S((m_1)*(m_2)) must also be multiplicatively independent. For example, S(5) = {2}, S(7) = {3}, so S(35) = {22, 31}. For every a coprime to 35, solving a == 22^e * 31^f (mod 35) is equivalent to solving a == 2^e * 1^f (mod 35) and a == 1^e * 3^f (mod 7) separately, which are immediately reduced to a == 2^e (mod 5) and a == 3^f (mod 7). See A302257 for more information. [Revised by Jianing Song, Mar 16 2019]
Also, S(n) can be used to show that if gcd(m_1, m_2) = 1, then every Dirichlet character modulo (m_1)*(m_2) can be written as the product of a character modulo m_1 and a character modulo m_2. Define S(m_1), S(m_2) and S((m_1)*(m_2)) as above. Let {Chi(n, k)} be a Dirichlet character modulo n. {Chi((m_1)*(m_2), k)} is wholly determined by Chi((m_1)*(m_2), x'_1), Chi((m_1)*(m_2), x'_2), ..., Chi((m_1)*(m_2), x'_r), Chi((m_1)*(m_2), y'_1), Chi((m_1)*(m_2), y'_2), ..., Chi((m_1)*(m_2), y'_s). We have Chi(m_1, t)*Chi(m_2, t) = Chi((m_1)*(m_2), t) for every t belongs to S((m_1)*(m_2)). These equations then reduce to Chi(m_1, x_i) = Chi((m_1)*(m_2), x'_i) and Chi(m_2, y_i) = Chi((m_1)*(m_2), y'_i), so {Chi(m_1, k)} and {Chi(m_2, k)} are determined. It's easy to see that the product of a character modulo m_1 and a character modulo m_2 is a character modulo (m_1)*(m_2), so all characters modulo (m_1)*(m_2) can be constructed using the characters modulo m_1 and the characters modulo m_2.

Examples

			Table begins
(1)  Empty set;
(2)  Empty set;
(3)  {2};
(4)  {3};
(5)  {2};
(6)  {5};
(7)  {3};
(8)  {5, 7};
(9)  {2};
(10) {7};
...
Example shows that S(560) = {241, 337, 351, 421}: (Start)
Since 560 = 16*5*7, we have S(560) = {1 <= x <= 560: x == 2 (mod 5) and x == 1 (mod 16*7), or x == 3 (mod 7) and x == 1 (mod 16*5), or x == 5 (mod 16) and x == 1 (mod 5*7), or x == 15 (mod 16) and x == 1 (mod 5*7)} = {241, 337, 351, 421}.
To find the index of a number, say, 403, with respect to the base (241, 337, 351, 421) modulo 560, suppose 241^a * 337^b * 351^c * 421^d == 403 (mod 560). Then we have:
- Modulo 16: 15^c * 5^d == 3 (mod 16) => c = 1, d = 3;
- Modulo 5: 2^b == 3 (mod 5) => b = 3;
- Modulo 7: 3^a == 4 (mod 7) => a = 4.
So the index of 403 with respect to the base (241, 337, 351, 421) modulo 560 is (4, 3, 1, 3). Note that the bases here are ordered. So the index of 403 with respect to the base (337, 241, 421, 351) modulo 560 is (3, 4, 3, 1). (End)
		

Crossrefs

Programs

  • PARI
    a(n) = my(v=vector(#znstar(n)[2]), f=factor(n)); if(n%2||n%8==4, for(i=1, #v, v[i]=lift(chinese(znprimroot(f[i,1]^f[i,2]), Mod(1, n/f[i,1]^f[i,2]))))); if(n%4==2, for(i=1, #v, v[i]=lift(chinese(znprimroot(f[i+1,1]^f[i+1,2]), Mod(1, n/f[i+1,1]^f[i+1,2]))))); if(n%8==0, v[1]=lift(chinese(Mod(5, 2^f[1,2]), Mod(1, n/2^f[1,2]))); v[2]=lift(chinese(Mod(-1, 2^f[1,2]), Mod(1, n/2^f[1,2]))); for(i=3, #v, v[i]=lift(chinese(znprimroot(f[i-1,1]^f[i-1,2]), Mod(1, n/f[i-1,1]^f[i-1,2]))))); v=vecsort(v); v

Extensions

Name simplified by Jianing Song, Mar 16 2019

A348418 a(n) is the smallest k with rank((Z/kZ)*) = n such that there are an odd number of coprime squares modulo k.

Original entry on oeis.org

1, 3, 8, 24, 168, 1848, 35112, 807576, 25034856, 1076498808, 50595443976, 2985131194584, 200003790037128, 14200269092636088, 1121821258318250952, 93111164440414829016, 9590449937362727388648, 1026178143297811830585336, 130324624198822102484337672
Offset: 0

Views

Author

Jianing Song, Oct 18 2021

Keywords

Comments

The rank of a finitely generated group rank(G) is defined to be the size of the minimal generating sets of G. In particular, rank((Z/kZ)*) = 0 if k <= 2 and A046072(k) otherwise.
The number of coprime squares modulo a(n) is given by A046073(a(n)) = A348420(n-2) for n >= 2.
a(n) is the least k such that the Sylow 2-subgroup of (Z/kZ)* is (C_2)^n. - Jianing Song, Aug 13 2023

Examples

			a(2) = 8;
a(3) = 8 * 3 = 24;
a(4) = 8 * 3 * 7 = 168;
a(5) = 8 * 3 * 7 * 11 = 1848;
a(6) = 8 * 3 * 7 * 11 * 19 = 35112.
		

Crossrefs

Programs

  • PARI
    a(n) = if(n<=2, [1, 3, 8][n+1], my(t=8); forprime(p=2, , if(p%4==3, t*=p; if(n--<3, return(t))))) \\ following Charles R Greathouse IV's program for A078586

Formula

a(n) = 8 * A078586(n-2) = 8 * (Product_{k=1..n-2} A002145(k)) for n > 2.

A348420 a(n) = Product_{k=1..n} (p_k - 1)/2 where p_1, p_2, ..., p_n are the first n primes congruent to 3 modulo 4.

Original entry on oeis.org

1, 1, 3, 15, 135, 1485, 22275, 467775, 10758825, 312005925, 10296195525, 360366843375, 14054306891625, 576226582556625, 29387555710387875, 1557540452650557375, 98125048516985114625, 6378128153604032450625, 440090842598678239093125
Offset: 0

Views

Author

Jianing Song, Oct 18 2021

Keywords

Comments

a(n) is the number of coprime squares modulo A348418(n+2), where A348418(n) is the smallest k with rank((Z/kZ)*) = n such that there are an odd number of coprime squares modulo k. (The rank of a finitely generated group rank(G) is defined to be the size of the minimal generating sets of G. In particular, rank((Z/kZ)*) = 0 if k <= 2 and A046072(k) otherwise.)

Examples

			A348418(2) = 8, and the number of coprime squares modulo 8 is a(0) = 1;
A348418(3) = 8 * 3 = 24, and the number of coprime squares modulo 24 is a(1) = (3-1)/2 = 1;
A348418(4) = 8 * 3 * 7 = 168, and the number of coprime squares modulo 168 is a(2) = ((3-1)/2) * ((7-1)/2) = 3;
A348418(5) = 8 * 3 * 7 * 11 = 1848, and the number of coprime squares modulo 1848 is a(3) = ((3-1)/2) * ((7-1)/2) * ((11-1)/2) = 15;
A348418(6) = 8 * 3 * 7 * 11 * 19 = 35112, and the number of coprime squares modulo 35112 is a(4) = ((3-1)/2) * ((7-1)/2) * ((11-1)/2) * ((19-1)/2) = 135.
		

Crossrefs

Programs

Formula

a(n) = Product_{k=1..n} (A002145(k) - 1)/2.
a(n) = A046073(A348418(n+2)).

A366935 Moduli k for which the number of quadratic residues mod k coprime to k is equal to phi(k)/2^(phi(k)/lambda(k)), where lambda is Carmichael's function.

Original entry on oeis.org

3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 54, 55, 57, 58, 59, 61, 62, 64, 66, 67, 68, 69, 70, 71, 73, 74, 75
Offset: 1

Views

Author

Miles Englezou, Oct 29 2023

Keywords

Comments

Numbers k such that A046073(k) = A000010(k)/2^A034380(k).
An empirical observation, calculated for 2 <= k <= 10^5. The number of quadratic residues mod k coprime to k is |Q_k| = phi(k)/2^r, r = A046072(k) <= phi(k)/lambda(k). Up to 10^5, the equality holds for 37758 moduli, and the inequality holds for 62241.

Examples

			k = 3 is a term: |Q_3| = phi(3)/2^1 = 1, so r = 1 = phi(3)/lambda(3).
		

References

  • D. Shanks, Solved and Unsolved Problems in Number Theory, 4th ed. New York: Chelsea, 1993, page 95.

Crossrefs

Programs

  • PARI
    isok(n) = my(z=znstar(n).cyc); #z == eulerphi(n)/lcm(z) \\ Andrew Howroyd, Oct 29 2023

Formula

{ k : |Q_k| = phi(k)/2^(phi(k)/lambda(k)) }, where lambda is Carmichael's function (A002322).

A258446 Irregular triangular array read by rows. Row n gives the decomposition of the multiplicative group of integers modulo n as a direct product of cyclic groups C_1 X C_2 X ... X C_k, where |C_i| divides |C_j|, i>j.

Original entry on oeis.org

1, 2, 2, 4, 2, 6, 2, 2, 6, 4, 10, 2, 2, 12, 6, 4, 2, 4, 2, 16, 6, 18, 4, 2, 6, 2, 10, 22, 2, 2, 2, 20, 12, 18, 6, 2, 28, 4, 2, 30, 8, 2, 10, 2, 16, 12, 2, 6, 2, 36, 18, 12, 2, 4, 2, 2, 40, 6, 2, 42, 10, 2, 12, 2, 22, 46, 4, 2, 2, 42, 20
Offset: 2

Views

Author

Geoffrey Critzer and Mark Dooris, May 30 2015

Keywords

Comments

Row lengths are A046072.
The products of the terms in each row are A000010.
First column is A002322.
Row 2^k is [2, 2^(k-2)] for k > 2. - Tom Edgar, May 31 2015
Row p^k (and row 2*p^k) is [(p-1)*p^(k-1)] for odd prime p. - Tom Edgar, May 31 2015
The number of distinct groups over numbers less than or equal to 10^k for k=1,2,3,4,5,6 is 5, 50, 447, 4060, 36655, 335714.

Examples

			1;
2;
2;
4;
2;
6;
2, 2;
6;
4;
10;
2, 2;
12;
6;
4, 2;
4, 2;
16;
6;
18;
4, 2;
6, 2;
10;
22;
2, 2, 2;
The row for n=8 reads: 2,2 because the multiplicative group mod 8 is isomorphic to C_2 X C_2.
		

References

  • Shanks, D. Solved and Unsolved Problems in Number Theory, 4th ed. New York: Chelsea, pp. 92-93, 1993.

Programs

  • Mathematica
    f[{p_, e_}] := {FactorInteger[p - 1][[All, 1]]^
       FactorInteger[p - 1][[All, 2]],
      FactorInteger[p^(e - 1)][[All, 1]]^
       FactorInteger[p^(e - 1)][[All, 2]]};
    fun[lst_] :=
    Module[{int, num, res},
      int = Sort /@ GatherBy[Join @@ (FactorInteger /@ lst), First];
      num = Times @@ Power @@@ (Last@# & /@ int);
      res = Flatten[Map[Power @@ # &, Most /@ int, {2}]];
      {num, res}]
    rec[lt_] :=
    First@NestWhile[{Append[#[[1]], fun[#[[2]]][[1]]],
         fun[#[[2]]][[2]]} &, {{}, lt}, Length[#[[2]]] > 0 &];
    Table[If[! IntegerQ[n/8],
        DeleteCases[rec[Flatten[Map[f, FactorInteger[n]]]], 1],
        DeleteCases[
         rec[Join[{2, 2^(FactorInteger[n][[1, 2]] - 2)},
           Flatten[Map[f, Drop[FactorInteger[n], 1]]]]], 1]], {n, 2,
        50}] /. {} -> {1} // Grid

A272590 a(n) is the smallest number m such that the multiplicative group modulo m is the direct product of n cyclic groups.

Original entry on oeis.org

2, 8, 24, 120, 840, 9240, 120120, 2042040, 38798760, 892371480, 25878772920, 802241960520, 29682952539240, 1217001054108840, 52331045326680120, 2459559130353965640, 130356633908760178920, 7691041400616850556280, 469153525437627883933080, 31433286204321068223516360
Offset: 1

Views

Author

Joerg Arndt, May 05 2016

Keywords

Comments

Arguably a(1)=3, as the multiplicative group mod 2 has only one element, hence its factorization is the empty product. - Joerg Arndt, May 18 2018
For n >= 2, positions of records of A046072. - Joerg Arndt, May 18 2018

Crossrefs

Numbers n such that the multiplicative group modulo n is the direct product of k cyclic groups: A033948 (k=1), A272593 (k=2), A272593 (k=3), A272594 (k=4), A272595 (k=5), A272596 (k=6), A272597 (k=7), A272598 (k=8), A272599 (k=9).

Programs

  • PARI
    a(n)=if(n==1,2,4*prod(k=1,n-1,prime(k)));

Formula

a(1) = 2, a(n) = 4 * prod(k=1..n-1, prime(k) ) for n >= 2.
a(n) = A102476(n) for n >= 2.
A002322(a(n)) = A058254(n).
Previous Showing 21-30 of 35 results. Next