A102476
Least modulus with 2^n square roots of 1.
Original entry on oeis.org
1, 3, 8, 24, 120, 840, 9240, 120120, 2042040, 38798760, 892371480, 25878772920, 802241960520, 29682952539240, 1217001054108840, 52331045326680120, 2459559130353965640, 130356633908760178920, 7691041400616850556280
Offset: 0
a(3) = 24 because 24 is the least modulus with 2^3 square roots of 1, namely 1,5,7,11,13,17,19,23.
-
{1, 3}~Join~Table[4 Product[Prime[k], {k, n}], {n, 17}] (* Michael De Vlieger, Mar 27 2016 *)
nxt[{a_, p_}] := {a*NextPrime[p], NextPrime[p]}; Join[{1,3},NestList[nxt,{8,2},20][[All,1]]] (* or *) Join[{1,3},4*FoldList[ Times, Prime[ Range[ 21]]]](* Harvey P. Dale, Dec 18 2016 *)
-
a(n) = if(n<=1, [1,3][n+1], 4*factorback(primes(n-1))) \\ Jianing Song, Oct 19 2021, following David A. Corneth's program for A002110
A348420
a(n) = Product_{k=1..n} (p_k - 1)/2 where p_1, p_2, ..., p_n are the first n primes congruent to 3 modulo 4.
Original entry on oeis.org
1, 1, 3, 15, 135, 1485, 22275, 467775, 10758825, 312005925, 10296195525, 360366843375, 14054306891625, 576226582556625, 29387555710387875, 1557540452650557375, 98125048516985114625, 6378128153604032450625, 440090842598678239093125
Offset: 0
A348418(2) = 8, and the number of coprime squares modulo 8 is a(0) = 1;
A348418(3) = 8 * 3 = 24, and the number of coprime squares modulo 24 is a(1) = (3-1)/2 = 1;
A348418(4) = 8 * 3 * 7 = 168, and the number of coprime squares modulo 168 is a(2) = ((3-1)/2) * ((7-1)/2) = 3;
A348418(5) = 8 * 3 * 7 * 11 = 1848, and the number of coprime squares modulo 1848 is a(3) = ((3-1)/2) * ((7-1)/2) * ((11-1)/2) = 15;
A348418(6) = 8 * 3 * 7 * 11 * 19 = 35112, and the number of coprime squares modulo 35112 is a(4) = ((3-1)/2) * ((7-1)/2) * ((11-1)/2) * ((19-1)/2) = 135.
A246541
Take the squares of all P_(n+2)-rough numbers less than the (n+1)-th primorial and mod each by the (n+1)-th primorial. There will be a(n) different results.
Original entry on oeis.org
1, 2, 6, 30, 180, 1440, 12960, 142560, 1995840, 29937600, 538876800, 10777536000, 226328256000, 5205549888000, 135344297088000, 3924984615552000, 117749538466560000, 3885734769396480000, 136000716928876800000, 4896025809439564800000, 190945006568143027200000
Offset: 1
For n=2, P_(n+2) = 7.
The 7-rough numbers less than 2*3*5 are 1,7,11,13,17,19,23,29.
The squares of those numbers mod 2*3*5 are 1,19,1,19,19,1,19,1.
There are 2 different results: 1 and 19; so a(2) = 2.
-
import java.util.TreeSet;
for(int z = 1; z < 10 ; z++) {
int n = z;
int numNumPerLine = 210;
int[] primes = {2,3,5,7,11,13,17,19,23,29,31,37,41,43};
int numRepeats = 1;
int numSpaces = 1;
for(int i = 0; i < n + 1; i++) {
numSpaces *= (primes[i] - 1);
}
int counter = 0;
long integerLength = 1;
for(int i = 0; i < n + 1; i++) {
integerLength *= primes[i];
}
TreeSet numResults = new TreeSet();
numSpaces/=2;
for(int i = 1; i < integerLength / 2; i+=2) {
boolean isInList = true;
for(int j = 1; j < n + 1; j++) {
if(i % primes[j] == 0) {
isInList = false;
}
}
if(isInList) {
long k = i % integerLength;
if(k != 0) {
long l = (k * k) % integerLength;
if(!numResults.contains(l)) {
numResults.add(l);
}
}
}
}
System.out.println(numResults.size());
}
-
a(n) = {hp = prod(k=1, n+1, prime(k)); rp = prod(k=1, n+2, prime(k)); v = []; for (i=1, hp, if (gcd(i, rp) == 1, nv = i^2 % hp; if (! vecsearch(v, nv), v = vecsort(concat(v, nv))););); #v;} \\ Michel Marcus, Sep 06 2014
Showing 1-3 of 3 results.
Comments