A006278
a(n) is the product of the first n primes congruent to 1 (mod 4).
Original entry on oeis.org
5, 65, 1105, 32045, 1185665, 48612265, 2576450045, 157163452745, 11472932050385, 1021090952484265, 99045822390973705, 10003628061488344205, 1090395458702229518345, 123214686833351935572985
Offset: 1
-
maxN=15; pLst={}; k=0; While[Length[pLst]Harvey P. Dale, Jun 16 2013 *)
-
tree(v)=my(t=#v); if(t<4, factorback(v), tree(v[1..t\2])*tree(v[t\2+1..t]));
a(n,x=9*n\4+2)=my(P=select(p->p%4==1, primes(x))); if(#PCharles R Greathouse IV, Jan 08 2018
A112086
a(n) = the period of the first differences of the n-th row of A112060 (or A112070), or 0 if that row does not have a periodic first difference.
Original entry on oeis.org
2, 4, 6, 16, 72, 420, 3240
Offset: 1
These are the periods of
A010684,
A112132,
A112133,
A112134,
A112135,
A112136,
A112137, etc. (Periods of
A112138 &
A112139 not computed yet.) If we sum the period length prefixes of these sequences, as Sum_{i=1..a(1)}
A010684(i), Sum_{i=1..a(2)}
A112132(i), Sum_{i=1..a(3)}
A112133(i), etc., we get the sequence 4, 12, 60, 420, 4620, 60060, 1021020, ... (cf.
A097250) and when doubled, it yields: 8, 24, 120, 840, 9240, 120120, 2042040, ... (cf.
A066631 and
A102476).
A323739
a(n) is the number of residues modulo (4*primorial(n)) of the squares of primes greater than or equal to prime(n+1).
Original entry on oeis.org
2, 1, 1, 2, 6, 30, 180, 1440, 12960, 142560, 1995840, 29937600, 538876800, 10777536000, 226328256000, 5205549888000, 135344297088000, 3924984615552000, 117749538466560000, 3885734769396480000, 136000716928876800000, 4896025809439564800000, 190945006568143027200000
Offset: 0
a(3) = 2 because, for every prime p >= prime(3+1) = 7, p^2 mod (4*2*3*5 = 120) is one of the 2 values {1, 49}:
7^2 mod 120 = 49 mod 120 = 49
11^2 mod 120 = 121 mod 120 = 1
13^2 mod 120 = 169 mod 120 = 49
17^2 mod 120 = 289 mod 120 = 49
19^2 mod 120 = 361 mod 120 = 1
23^2 mod 120 = 529 mod 120 = 49
29^2 mod 120 = 841 mod 120 = 1
...
.
q=(n+1)st b = residues p^2 mod b
n prime 4*primorial(n) for p >= q a(n)
= ========= =============== ======================= ====
0 2 4 = 4 {0,1} 2
1 3 4*2 = 8 {1} 1
2 5 4*2*3 = 24 {1} 1
3 7 4*2*3*5 = 120 {1,49} 2
4 11 4*2*3*5*7 = 840 {1,121,169,289,361,529} 6
A303557
a(0) = 1; a(n) = 2^(n-1)*prime(n)#, where prime(n)# is the product of first n primes.
Original entry on oeis.org
1, 2, 12, 120, 1680, 36960, 960960, 32672640, 1241560320, 57111774720, 3312482933760, 205373941893120, 15197671700090880, 1246209079407452160, 107173980829040885760, 10074354197929843261440, 1067881544980563385712640, 126010022307706479514091520, 15373222721540190500719165440
Offset: 0
a(1) = 2^1;
a(2) = 2^2*3;
a(3) = 2^3*3*5;
a(4) = 2^4*3*5*7;
a(5) = 2^5*3*5*7*11, etc.
Central terms of triangle
A303555 (for n > 0).
-
Join[{1}, Table[2^(n - 1) Product[Prime[j], {j, n}], {n, 18}]]
A348418
a(n) is the smallest k with rank((Z/kZ)*) = n such that there are an odd number of coprime squares modulo k.
Original entry on oeis.org
1, 3, 8, 24, 168, 1848, 35112, 807576, 25034856, 1076498808, 50595443976, 2985131194584, 200003790037128, 14200269092636088, 1121821258318250952, 93111164440414829016, 9590449937362727388648, 1026178143297811830585336, 130324624198822102484337672
Offset: 0
a(2) = 8;
a(3) = 8 * 3 = 24;
a(4) = 8 * 3 * 7 = 168;
a(5) = 8 * 3 * 7 * 11 = 1848;
a(6) = 8 * 3 * 7 * 11 * 19 = 35112.
-
a(n) = if(n<=2, [1, 3, 8][n+1], my(t=8); forprime(p=2, , if(p%4==3, t*=p; if(n--<3, return(t))))) \\ following Charles R Greathouse IV's program for A078586
A378133
Irregular triangle T(n,k) = P(n)*2^k, n >= 0, k = 0..floor(log_2 prime(k+1)), where P = A002110.
Original entry on oeis.org
1, 2, 4, 6, 12, 24, 30, 60, 120, 210, 420, 840, 1680, 2310, 4620, 9240, 18480, 30030, 60060, 120120, 240240, 480480, 510510, 1021020, 2042040, 4084080, 8168160, 9699690, 19399380, 38798760, 77597520, 155195040, 223092870, 446185740, 892371480, 1784742960, 3569485920
Offset: 0
Rows n = 0..9:
n\k | 0 1 2 3 4
-------------------------------------------------------------
0 | 1 . . . .
1 | 2 4 . . .
2 | 6 12 24 . .
3 | 30 60 120 . .
4 | 210 420 840 1680 .
5 | 2310 4620 9240 18480 .
6 | 30030 60060 120120 240240 480480
7 | 510510 1021020 2042040 4084080 8168160
8 | 9699690 19399380 38798760 77597520 155195040
9 | 223092870 446185740 892371480 1784742960 3569485920
-
nn = 16;
MapIndexed[Set[P[First[#2] - 1], #1] &,
FoldList[Times, 1, Prime@ Range[nn + 1] ] ];
Union@ Flatten@
Table[P[i]*2^Range[0, Floor[Log2[Prime[i + 1] ] ] ], {i, 0, nn}]
A379423
Least modulus k such that the multiplicative group modulo k is the direct product of n nontrivial cyclic groups.
Original entry on oeis.org
1, 3, 7, 21, 56, 168, 504, 1736, 5208, 15624, 57288, 171864, 671832, 2234232, 7390152, 32023992, 96071976, 450799272, 1559322072, 5860390536, 20271186936, 95118646392, 385152551784, 1236542403096, 6182712015480, 23494305658824, 82848341007432, 409295535424776
Offset: 0
a(2) = 7 because (Z/7Z)* ≅ C2 x C3.
A272590
a(n) is the smallest number m such that the multiplicative group modulo m is the direct product of n cyclic groups.
Original entry on oeis.org
2, 8, 24, 120, 840, 9240, 120120, 2042040, 38798760, 892371480, 25878772920, 802241960520, 29682952539240, 1217001054108840, 52331045326680120, 2459559130353965640, 130356633908760178920, 7691041400616850556280, 469153525437627883933080, 31433286204321068223516360
Offset: 1
-
a(n)=if(n==1,2,4*prod(k=1,n-1,prime(k)));
A332802
a(n) is the smallest q such that the number of nonnegative k <= q, possessing the property that k + k*q - q is a square, is equal to 2^n.
Original entry on oeis.org
0, 2, 7, 23, 119, 839, 9239, 120119, 2042039, 38798759, 892371479, 25878772919, 802241960519, 29682952539239, 1217001054108839, 52331045326680119, 2459559130353965639, 130356633908760178919, 7691041400616850556279, 469153525437627883933079, 31433286204321068223516379
Offset: 0
a(0) = 0 because 2^0 = 1 solution is 0 (where k=0).
a(1) = 2 because 2^1 = 2 solutions are 1 (1) and 4 (2).
a(2) = 7 because 2^2 = 4 solutions are 1 (1), 9 (2), 25 (4), 49 (7).
a(3) = 23 because 2^3 = 8 solutions are 1 (1), 25 (2), 49 (3), 121 (6), 169 (8), 289 (13), 361 (16), 529 (23).
a(4) = 119 because 2^4 = 16 solutions are 1 (1), 121 (2), 361 (4), 841 (8), 961 (9), 1681 (15), 2401 (21), 3481 (30), 3721 (32), 5041 (43), 6241 (53), 7921 (67), 8281 (70), 10201 (86), 11881 (100), 14161 (119).
-
a(n) = {my(q=0); while (sum(k=0, q, issquare(k + k*q - q)) != 2^n, q++); q;} \\ Michel Marcus, Feb 25 2020
A379424
Least modulus k such that the multiplicative group modulo k has a difference of n nontrivial cycles between its minimal and maximal representation.
Original entry on oeis.org
1, 7, 31, 211, 1333, 6541, 45787, 281263, 1968841, 13781887, 93098053, 649998793, 4549991551, 31849940857, 215149600483, 1506047203381, 10542330423667, 86982188480467, 587573558919073, 4113014912433511, 28791104387034577, 247368468304929733
Offset: 0
a(4) = 1333 because (Z/1333Z) ≅ C210 x C6 ≅ C2 x C3 x C5 x C2 x C3 x C7. The first representation has 2 cycles and the second has 6, a difference of 4.
Showing 1-10 of 10 results.
Comments