cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A006278 a(n) is the product of the first n primes congruent to 1 (mod 4).

Original entry on oeis.org

5, 65, 1105, 32045, 1185665, 48612265, 2576450045, 157163452745, 11472932050385, 1021090952484265, 99045822390973705, 10003628061488344205, 1090395458702229518345, 123214686833351935572985
Offset: 1

Views

Author

Gene_Salamin(AT)cohr.com

Keywords

Comments

a(n)+2 is prime for n=1,2. No others are prime for n <= 200. Compare A002110 and A078586. - T. D. Noe, Dec 01 2002
Also, a(n) is least hypotenuse of exactly A003462(n) Pythagorean triangles of which 2^(n-1) are primitive. - Lekraj Beedassy, Dec 06 2003
Also, a(n) are the record setting values of m, for the number of solutions to "m*k-1 is a square", for some k, 1 <= k < m. There is one solution for m=2, and for a given m = a(n) there are 2^n solutions. For a given m there also 2^(n-1) solutions for primitively representing m as x^2 + y^2. See A008782. Also compare with A102476, which applies to "m*k+1 is a square". - Richard R. Forberg, Mar 18 2016
a(n) is the smallest m such that A000089(m) = 2^n. Also, numbers k for which A000089(k) sets a new record. - Jianing Song, Apr 27 2019

Crossrefs

Programs

  • Mathematica
    maxN=15; pLst={}; k=0; While[Length[pLst]Harvey P. Dale, Jun 16 2013 *)
  • PARI
    tree(v)=my(t=#v); if(t<4, factorback(v), tree(v[1..t\2])*tree(v[t\2+1..t]));
    a(n,x=9*n\4+2)=my(P=select(p->p%4==1, primes(x))); if(#PCharles R Greathouse IV, Jan 08 2018

Formula

a(n) = Product_{i=1..n} A002144(i). - Alois P. Heinz, Mar 01 2021

A112086 a(n) = the period of the first differences of the n-th row of A112060 (or A112070), or 0 if that row does not have a periodic first difference.

Original entry on oeis.org

2, 4, 6, 16, 72, 420, 3240
Offset: 1

Views

Author

Antti Karttunen, Aug 28 2005

Keywords

Comments

These values have been computed empirically. An independent recomputation or a mathematical proof would be welcome. The initial terms factored: 2, 2*2, 2*3, 2*2*2*3*3, 2*2*7*3*5, 2*2*2*3*3*3*3*5, ...

Crossrefs

These are the periods of A010684, A112132, A112133, A112134, A112135, A112136, A112137, etc. (Periods of A112138 & A112139 not computed yet.) If we sum the period length prefixes of these sequences, as Sum_{i=1..a(1)} A010684(i), Sum_{i=1..a(2)} A112132(i), Sum_{i=1..a(3)} A112133(i), etc., we get the sequence 4, 12, 60, 420, 4620, 60060, 1021020, ... (cf. A097250) and when doubled, it yields: 8, 24, 120, 840, 9240, 120120, 2042040, ... (cf. A066631 and A102476).

A323739 a(n) is the number of residues modulo (4*primorial(n)) of the squares of primes greater than or equal to prime(n+1).

Original entry on oeis.org

2, 1, 1, 2, 6, 30, 180, 1440, 12960, 142560, 1995840, 29937600, 538876800, 10777536000, 226328256000, 5205549888000, 135344297088000, 3924984615552000, 117749538466560000, 3885734769396480000, 136000716928876800000, 4896025809439564800000, 190945006568143027200000
Offset: 0

Views

Author

Jon E. Schoenfield, Feb 20 2019

Keywords

Comments

Here, "primorial(n)" is A002110(n) = Product_{k=1..n} prime(k).
For n >= 1, a(n) is the number of coprime squares modulo 4*primorial(n). Note that 4*primorial(n) = A102476(n+1) is the smallest k such that rank((Z/kZ)*) = n+1 for n >= 1. (The rank of a finitely generated group rank(G) is defined to be the size of the minimal generating sets of G. In particular, rank((Z/kZ)*) = 0 if k <= 2 and A046072(k) otherwise.) - Jianing Song, Oct 18 2021

Examples

			a(3) = 2 because, for every prime p >= prime(3+1) = 7, p^2 mod (4*2*3*5 = 120) is one of the 2 values {1, 49}:
   7^2 mod 120 =  49 mod 120 = 49
  11^2 mod 120 = 121 mod 120 =  1
  13^2 mod 120 = 169 mod 120 = 49
  17^2 mod 120 = 289 mod 120 = 49
  19^2 mod 120 = 361 mod 120 =  1
  23^2 mod 120 = 529 mod 120 = 49
  29^2 mod 120 = 841 mod 120 =  1
  ...
.
   q=(n+1)st        b =          residues p^2 mod b
n    prime    4*primorial(n)         for p >= q         a(n)
=  =========  ===============  =======================  ====
0      2      4         =   4           {0,1}             2
1      3      4*2       =   8            {1}              1
2      5      4*2*3     =  24            {1}              1
3      7      4*2*3*5   = 120           {1,49}            2
4     11      4*2*3*5*7 = 840  {1,121,169,289,361,529}    6
		

Crossrefs

Programs

Formula

Conjecture: a(n) = 2^(1-n)*Product_{j=1..n} (prime(j)-1) for n >= 0, so a(n) = a(n-1)*(prime(n)-1)/2 for n >= 1.
From Charlie Neder, Feb 28 2019: (Start)
Conjecture is true. Since there exists a prime congruent to r modulo 4*primorial(n) for any r coprime to primorial(n), this set is precisely the set of coprime quadratic residues of 4*primorial(n). If n >= 1, each residue can be broken down into congruences modulo 8 and the first n-1 odd primes, each odd prime p has (p-1)/2 residue classes, and every combination eventually occurs, giving the formula. (End)

Extensions

More terms from Jianing Song, Oct 18 2021

A303557 a(0) = 1; a(n) = 2^(n-1)*prime(n)#, where prime(n)# is the product of first n primes.

Original entry on oeis.org

1, 2, 12, 120, 1680, 36960, 960960, 32672640, 1241560320, 57111774720, 3312482933760, 205373941893120, 15197671700090880, 1246209079407452160, 107173980829040885760, 10074354197929843261440, 1067881544980563385712640, 126010022307706479514091520, 15373222721540190500719165440
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 26 2018

Keywords

Comments

For n > 0, a(n) is the smallest number m having exactly n distinct prime divisors and exactly 2*n - 1 prime divisors counted with multiplicity.

Examples

			a(1) = 2^1;
a(2) = 2^2*3;
a(3) = 2^3*3*5;
a(4) = 2^4*3*5*7;
a(5) = 2^5*3*5*7*11, etc.
		

Crossrefs

Central terms of triangle A303555 (for n > 0).

Programs

  • Mathematica
    Join[{1}, Table[2^(n - 1) Product[Prime[j], {j, n}], {n, 18}]]

Formula

a(n) = A011782(n)*A002110(n).

A348418 a(n) is the smallest k with rank((Z/kZ)*) = n such that there are an odd number of coprime squares modulo k.

Original entry on oeis.org

1, 3, 8, 24, 168, 1848, 35112, 807576, 25034856, 1076498808, 50595443976, 2985131194584, 200003790037128, 14200269092636088, 1121821258318250952, 93111164440414829016, 9590449937362727388648, 1026178143297811830585336, 130324624198822102484337672
Offset: 0

Views

Author

Jianing Song, Oct 18 2021

Keywords

Comments

The rank of a finitely generated group rank(G) is defined to be the size of the minimal generating sets of G. In particular, rank((Z/kZ)*) = 0 if k <= 2 and A046072(k) otherwise.
The number of coprime squares modulo a(n) is given by A046073(a(n)) = A348420(n-2) for n >= 2.
a(n) is the least k such that the Sylow 2-subgroup of (Z/kZ)* is (C_2)^n. - Jianing Song, Aug 13 2023

Examples

			a(2) = 8;
a(3) = 8 * 3 = 24;
a(4) = 8 * 3 * 7 = 168;
a(5) = 8 * 3 * 7 * 11 = 1848;
a(6) = 8 * 3 * 7 * 11 * 19 = 35112.
		

Crossrefs

Programs

  • PARI
    a(n) = if(n<=2, [1, 3, 8][n+1], my(t=8); forprime(p=2, , if(p%4==3, t*=p; if(n--<3, return(t))))) \\ following Charles R Greathouse IV's program for A078586

Formula

a(n) = 8 * A078586(n-2) = 8 * (Product_{k=1..n-2} A002145(k)) for n > 2.

A378133 Irregular triangle T(n,k) = P(n)*2^k, n >= 0, k = 0..floor(log_2 prime(k+1)), where P = A002110.

Original entry on oeis.org

1, 2, 4, 6, 12, 24, 30, 60, 120, 210, 420, 840, 1680, 2310, 4620, 9240, 18480, 30030, 60060, 120120, 240240, 480480, 510510, 1021020, 2042040, 4084080, 8168160, 9699690, 19399380, 38798760, 77597520, 155195040, 223092870, 446185740, 892371480, 1784742960, 3569485920
Offset: 0

Views

Author

Michael De Vlieger, Nov 17 2024

Keywords

Comments

Subset of A060735.
a(n) = min(2*a(n-1), f(a(n-1))), where f(k) is the smallest primorial (A002110) greater than k, for n > 0. - Hal M. Switkay, Mar 19 2025

Examples

			Rows n = 0..9:
n\k |         0          1          2           3           4
-------------------------------------------------------------
  0 |         1          .          .           .           .
  1 |         2          4          .           .           .
  2 |         6         12         24           .           .
  3 |        30         60        120           .           .
  4 |       210        420        840        1680           .
  5 |      2310       4620       9240       18480           .
  6 |     30030      60060     120120      240240      480480
  7 |    510510    1021020    2042040     4084080     8168160
  8 |   9699690   19399380   38798760    77597520   155195040
  9 | 223092870  446185740  892371480  1784742960  3569485920
		

Crossrefs

Programs

  • Mathematica
    nn = 16;
    MapIndexed[Set[P[First[#2] - 1], #1] &,
      FoldList[Times, 1, Prime@ Range[nn + 1] ] ];
    Union@ Flatten@
      Table[P[i]*2^Range[0, Floor[Log2[Prime[i + 1] ] ] ], {i, 0, nn}]

Formula

T(n,k) = A002110(n)*A000079(k), n >= 0, k = 0..A098388(k+1).
T(n,0) = A002110(n).
T(n,1) = A088860(n), n >= 1.
T(n,2) = A102476(n), n >= 2.
T(n,A098388(k+1)) = A378144(n).
Let S(n,j) = A002110(n)*j, n >= 0, j = 0..A006093(n+1) = P(n)*j, n >= 0, j = 0..prime(n+1)-1. Then T(n,k) = S(n, 2^k).

A379423 Least modulus k such that the multiplicative group modulo k is the direct product of n nontrivial cyclic groups.

Original entry on oeis.org

1, 3, 7, 21, 56, 168, 504, 1736, 5208, 15624, 57288, 171864, 671832, 2234232, 7390152, 32023992, 96071976, 450799272, 1559322072, 5860390536, 20271186936, 95118646392, 385152551784, 1236542403096, 6182712015480, 23494305658824, 82848341007432, 409295535424776
Offset: 0

Views

Author

Asher Gray, Dec 22 2024

Keywords

Comments

Compare with A102476. That sequence also measures the least modulus k with n nontrivial cyclic groups, but only using the rank, the minimal representation for each such k. For example, A102476(3) = 24 as (Z/24Z)* ≅ C2 x C2 x C2. However with this sequence a(3) = 21 as (Z/21Z)* ≅ C2 x C2 x C3.

Examples

			a(2) = 7 because (Z/7Z)* ≅ C2 x C3.
		

Crossrefs

Cf. A102476.

A272590 a(n) is the smallest number m such that the multiplicative group modulo m is the direct product of n cyclic groups.

Original entry on oeis.org

2, 8, 24, 120, 840, 9240, 120120, 2042040, 38798760, 892371480, 25878772920, 802241960520, 29682952539240, 1217001054108840, 52331045326680120, 2459559130353965640, 130356633908760178920, 7691041400616850556280, 469153525437627883933080, 31433286204321068223516360
Offset: 1

Views

Author

Joerg Arndt, May 05 2016

Keywords

Comments

Arguably a(1)=3, as the multiplicative group mod 2 has only one element, hence its factorization is the empty product. - Joerg Arndt, May 18 2018
For n >= 2, positions of records of A046072. - Joerg Arndt, May 18 2018

Crossrefs

Numbers n such that the multiplicative group modulo n is the direct product of k cyclic groups: A033948 (k=1), A272593 (k=2), A272593 (k=3), A272594 (k=4), A272595 (k=5), A272596 (k=6), A272597 (k=7), A272598 (k=8), A272599 (k=9).

Programs

  • PARI
    a(n)=if(n==1,2,4*prod(k=1,n-1,prime(k)));

Formula

a(1) = 2, a(n) = 4 * prod(k=1..n-1, prime(k) ) for n >= 2.
a(n) = A102476(n) for n >= 2.
A002322(a(n)) = A058254(n).

A332802 a(n) is the smallest q such that the number of nonnegative k <= q, possessing the property that k + k*q - q is a square, is equal to 2^n.

Original entry on oeis.org

0, 2, 7, 23, 119, 839, 9239, 120119, 2042039, 38798759, 892371479, 25878772919, 802241960519, 29682952539239, 1217001054108839, 52331045326680119, 2459559130353965639, 130356633908760178919, 7691041400616850556279, 469153525437627883933079, 31433286204321068223516379
Offset: 0

Views

Author

Juri-Stepan Gerasimov, Feb 24 2020

Keywords

Examples

			a(0) = 0 because 2^0 = 1 solution is 0 (where k=0).
a(1) = 2 because 2^1 = 2 solutions are 1 (1) and 4 (2).
a(2) = 7 because 2^2 = 4 solutions are 1 (1), 9 (2), 25 (4), 49 (7).
a(3) = 23 because 2^3 = 8 solutions are 1 (1), 25 (2), 49 (3), 121 (6), 169 (8), 289 (13), 361 (16), 529 (23).
a(4) = 119 because 2^4 = 16 solutions are 1 (1), 121 (2), 361 (4), 841 (8), 961 (9), 1681 (15), 2401 (21), 3481 (30), 3721 (32), 5041 (43), 6241 (53), 7921 (67), 8281 (70), 10201 (86), 11881 (100), 14161 (119).
		

Crossrefs

Programs

  • PARI
    a(n) = {my(q=0); while (sum(k=0, q, issquare(k + k*q - q)) != 2^n, q++); q;} \\ Michel Marcus, Feb 25 2020

Formula

a(n) = A102476(n) - 1. - Jinyuan Wang, Feb 25 2020

Extensions

a(7) from Michel Marcus, Feb 25 2020
More terms from Jinyuan Wang, Feb 25 2020

A379424 Least modulus k such that the multiplicative group modulo k has a difference of n nontrivial cycles between its minimal and maximal representation.

Original entry on oeis.org

1, 7, 31, 211, 1333, 6541, 45787, 281263, 1968841, 13781887, 93098053, 649998793, 4549991551, 31849940857, 215149600483, 1506047203381, 10542330423667, 86982188480467, 587573558919073, 4113014912433511, 28791104387034577, 247368468304929733
Offset: 0

Views

Author

Asher Gray, Dec 22 2024

Keywords

Comments

This is equal to the least modulus k such that (Z/kZ)* has a representation as a direct product of cyclic groups, of which n are odd cycles. The number of even cycles in the maximal representation is equal to the total cycles in the minimal representation.

Examples

			a(4) = 1333 because (Z/1333Z) ≅ C210 x C6 ≅ C2 x C3 x C5 x C2 x C3 x C7. The first representation has 2 cycles and the second has 6, a difference of 4.
		

Crossrefs

Showing 1-10 of 10 results.