cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 55 results. Next

A290499 Hypotenuses for which there exist exactly 8 distinct integer triangles.

Original entry on oeis.org

390625, 781250, 1171875, 1562500, 2343750, 2734375, 3125000, 3515625, 4296875, 4687500, 5468750, 6250000, 7031250, 7421875, 8203125, 8593750, 8984375, 9375000, 10546875, 10937500, 12109375, 12500000, 12890625, 14062500, 14843750, 16406250, 16796875, 17187500
Offset: 1

Views

Author

Hamdi Sahloul, Aug 04 2017

Keywords

Comments

Numbers whose square is decomposable in 8 different ways into the sum of two nonzero squares: these are those with only one prime divisor of the form 4k+1 with multiplicity eight.

Examples

			a(1) = 390625 = 5^8, a(5) = 2343750 = 2*3*5^8, a(101) = 75000000 = 2^6*3*5^8.
		

Crossrefs

Cf. A004144 (0), A084645 (1), A084646 (2), A084647 (3), A084648 (4), A084649 (5), A097219 (6), A097101 (7), A290500 (9), A097225 (10), A290501 (11), A097226 (12), A097102 (13), A290502 (14), A290503 (15), A097238 (16), A097239 (17), A290504 (18), A290505 (19), A097103 (22), A097244 (31), A097245 (37), A097282 (40), A097626 (67).

Programs

  • Mathematica
    r[a_]:={b, c}/.{ToRules[Reduce[0Vincenzo Librandi, Mar 01 2016 *)

Formula

Terms are obtained by the product A004144(k)*A002144(p)^8 for k, p > 0 ordered by increasing values.

A290500 Hypotenuses for which there exist exactly 9 distinct integer triangles.

Original entry on oeis.org

1953125, 3906250, 5859375, 7812500, 11718750, 13671875, 15625000, 17578125, 21484375, 23437500, 27343750, 31250000, 35156250, 37109375, 41015625, 42968750, 44921875, 46875000, 52734375, 54687500, 60546875, 62500000, 64453125, 70312500, 74218750, 82031250
Offset: 1

Views

Author

Hamdi Sahloul, Aug 04 2017

Keywords

Comments

Numbers whose square is decomposable in 9 different ways into the sum of two nonzero squares: these are those with only one prime divisor of the form 4k+1 with multiplicity nine.

Examples

			a(1) = 1953125 = 5^9, a(5) = 11718750 = 2*3*5^9, a(101) = 375000000 = 2^6*3*5^9.
		

Crossrefs

Cf. A004144 (0), A084645 (1), A084646 (2), A084647 (3), A084648 (4), A084649 (5), A097219 (6), A097101 (7), A290499 (8), A097225 (10), A290501 (11), A097226 (12), A097102 (13), A290502 (14), A290503 (15), A097238 (16), A097239 (17), A290504 (18), A290505 (19), A097103 (22), A097244 (31), A097245 (37), A097282 (40), A097626 (67).

Programs

  • Mathematica
    r[a_]:={b, c}/.{ToRules[Reduce[0Vincenzo Librandi, Mar 01 2016 *)

Formula

Terms are obtained by the product A004144(k)*A002144(p)^9 for k, p > 0 ordered by increasing values.

A290501 Hypotenuses for which there exist exactly 11 distinct integer triangles.

Original entry on oeis.org

48828125, 97656250, 146484375, 195312500, 292968750, 341796875, 390625000, 439453125, 537109375, 585937500, 683593750, 781250000, 878906250, 927734375, 1025390625, 1074218750, 1123046875, 1171875000, 1318359375, 1367187500, 1513671875, 1562500000, 1611328125
Offset: 1

Views

Author

Hamdi Sahloul, Aug 04 2017

Keywords

Comments

Numbers whose square is decomposable in 11 different ways into the sum of two nonzero squares: these are those with only one prime divisor of the form 4k+1 with multiplicity eleven.

Examples

			a(1) = 48828125 = 5^11, a(5) = 292968750 = 2*3*5^11, a(101) = 9375000000 = 2^6*3*5^11.
		

Crossrefs

Cf. A004144 (0), A084645 (1), A084646 (2), A084647 (3), A084648 (4), A084649 (5), A097219 (6), A097101 (7), A290499 (8), A290500 (9), A097225 (10), A097226 (12), A097102 (13), A290502 (14), A290503 (15), A097238 (16), A097239 (17), A290504 (18), A290505 (19), A097103 (22), A097244 (31), A097245 (37), A097282 (40), A097626 (67).

Programs

  • Mathematica
    r[a_]:={b, c}/.{ToRules[Reduce[0Vincenzo Librandi, Mar 01 2016 *)

Formula

Terms are obtained by the product A004144(k)*A002144(p)^11 for k, p > 0 ordered by increasing values.

A290502 Hypotenuses for which there exist exactly 14 distinct integer triangles.

Original entry on oeis.org

6103515625, 12207031250, 18310546875, 24414062500, 36621093750, 42724609375, 48828125000, 54931640625, 67138671875, 73242187500, 85449218750, 97656250000, 109863281250, 115966796875, 128173828125, 134277343750, 140380859375, 146484375000, 164794921875
Offset: 1

Views

Author

Hamdi Sahloul, Aug 04 2017

Keywords

Comments

Numbers whose square is decomposable in 14 different ways into the sum of two nonzero squares: these are those with only one prime divisor of the form 4k+1 with multiplicity fourteen.

Examples

			a(1) = 6103515625 = 5^14, a(5) = 36621093750 = 2*3*5^14, a(101) = 1171875000000 = 2^6*3*5^14.
		

Crossrefs

Cf. A004144 (0), A084645 (1), A084646 (2), A084647 (3), A084648 (4), A084649 (5), A097219 (6), A097101 (7), A290499 (8), A290500 (9), A097225 (10), A290501 (11), A097226 (12), A097102 (13), A290503 (15), A097238 (16), A097239 (17), A290504 (18), A290505 (19), A097103 (22), A097244 (31), A097245 (37), A097282 (40), A097626 (67).

Programs

  • Mathematica
    r[a_]:={b, c}/.{ToRules[Reduce[0Vincenzo Librandi, Mar 01 2016 *)

Formula

Terms are obtained by the product A004144(k)*A002144(p)^14 for k, p > 0 ordered by increasing values.

A290503 Hypotenuses for which there exist exactly 15 distinct integer triangles.

Original entry on oeis.org

30517578125, 61035156250, 91552734375, 122070312500, 183105468750, 213623046875, 244140625000, 274658203125, 335693359375, 366210937500, 427246093750, 488281250000, 549316406250, 579833984375, 640869140625, 671386718750, 701904296875, 732421875000
Offset: 1

Views

Author

Hamdi Sahloul, Aug 04 2017

Keywords

Comments

Numbers whose square is decomposable in 15 different ways into the sum of two nonzero squares: these are those with only one prime divisor of the form 4k+1 with multiplicity fifteen.

Examples

			a(1) = 30517578125 = 5^15, a(5) = 183105468750 = 2*3*5^15, a(101) = 5859375000000 = 2^6*3*5^15.
		

Crossrefs

Cf. A004144 (0), A084645 (1), A084646 (2), A084647 (3), A084648 (4), A084649 (5), A097219 (6), A097101 (7), A290499 (8), A290500 (9), A097225 (10), A290501 (11), A097226 (12), A097102 (13), A290502 (14), A097238 (16), A097239 (17), A290504 (18), A290505 (19), A097103 (22), A097244 (31), A097245 (37), A097282 (40), A097626 (67).

Programs

  • Mathematica
    r[a_]:={b, c}/.{ToRules[Reduce[0Vincenzo Librandi, Mar 01 2016 *)

Formula

Terms are obtained by the product A004144(k)*A002144(p)^15 for k, p > 0 ordered by increasing values.

A290504 Hypotenuses for which there exist exactly 18 distinct integer triangles.

Original entry on oeis.org

3814697265625, 7629394531250, 11444091796875, 15258789062500, 22888183593750, 26702880859375, 30517578125000, 34332275390625, 41961669921875, 45776367187500, 53405761718750, 61035156250000, 68664550781250, 72479248046875, 80108642578125, 83923339843750
Offset: 1

Views

Author

Hamdi Sahloul, Aug 04 2017

Keywords

Comments

Numbers whose square is decomposable in 18 different ways into the sum of two nonzero squares: these are those with only one prime divisor of the form 4k+1 with multiplicity eighteen.

Examples

			a(1) = 3814697265625 = 5^18, a(5) = 22888183593750 = 2*3*5^18, a(101) = 732421875000000 = 2^6*3*5^18.
		

Crossrefs

Cf. A004144 (0), A084645 (1), A084646 (2), A084647 (3), A084648 (4), A084649 (5), A097219 (6), A097101 (7), A290499 (8), A290500 (9), A097225 (10), A290501 (11), A097226 (12), A097102 (13), A290502 (14), A290503 (15), A097238 (16), A097239 (17), A290505 (19), A097103 (22), A097244 (31), A097245 (37), A097282 (40), A097626 (67).

Programs

  • Mathematica
    r[a_]:={b, c}/.{ToRules[Reduce[0Vincenzo Librandi, Mar 01 2016 *)

Formula

Terms are obtained by the product A004144(k)*A002144(p)^18 for k, p > 0 ordered by increasing values.

A290505 Hypotenuses for which there exist exactly 19 distinct integer triangles.

Original entry on oeis.org

203125, 265625, 406250, 453125, 531250, 578125, 609375, 640625, 796875, 812500, 828125, 906250, 953125, 1062500, 1140625, 1156250, 1218750, 1281250, 1359375, 1390625, 1421875, 1515625, 1578125, 1593750, 1625000, 1656250, 1703125, 1734375, 1765625, 1812500
Offset: 1

Views

Author

Hamdi Sahloul, Aug 04 2017

Keywords

Comments

Numbers whose square is decomposable in 19 different ways into the sum of two nonzero squares: these are those with exactly two distinct prime divisors of the form 4k+1 with one, and six respective multiplicities, or with only one prime divisor of this form with multiplicity nineteen.

Examples

			a(1) = 203125 = 5^6*13, a(5) = 531250 = 2*5^6*17, a(281) = 12796875 = 3^2*5^6*7*13.
		

Crossrefs

Cf. A004144 (0), A084645 (1), A084646 (2), A084647 (3), A084648 (4), A084649 (5), A097219 (6), A097101 (7), A290499 (8), A290500 (9), A097225 (10), A290501 (11), A097226 (12), A097102 (13), A290502 (14), A290503 (15), A097238 (16), A097239 (17), A290504 (18), A097103 (22), A097244 (31), A097245 (37), A097282 (40), A097626 (67).

Programs

  • Mathematica
    r[a_]:={b, c}/.{ToRules[Reduce[0Vincenzo Librandi, Mar 01 2016 *)

Formula

Terms are obtained by the products A004144(k)*A002144(p1)*A002144(p2)^6, or A004144(k)*A002144(p1)^19 for k, p1, p2 > 0 ordered by increasing values.

A024362 Number of primitive Pythagorean triangles with hypotenuse n.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0
Offset: 1

Views

Author

Keywords

Comments

Consider primitive Pythagorean triangles (A^2 + B^2 = C^2, (A, B) = 1, A <= B); sequence gives number of times C takes value n.
a(A137409(n)) = 0; a(A008846(n)) > 0; a(A120960(n)) = 1; a(A024409(n)) > 1; a(A159781(n)) = 4. - Reinhard Zumkeller, Dec 02 2012
If the formula given below is used one is sure to find all a(n) values for hypotenuses n <= N if the summation indices r and s are cut off at rmax(N) = floor((sqrt(N-4)+1)/2) and smax(N) = floor(sqrt(N-1)/2). a(n) is the number of primitive Pythagorean triples with hypotenuse n modulo catheti exchange. - Wolfdieter Lang, Jan 10 2016

References

  • A. H. Beiler, Recreations in the Theory of Numbers. New York: Dover, pp. 116-117, 1966.

Crossrefs

Programs

  • Haskell
    a024362 n = sum [a010052 y | x <- takeWhile (< nn) $ tail a000290_list,
                                 let y = nn - x, y <= x, gcd x y == 1]
                where nn = n ^ 2
    -- Reinhard Zumkeller, Dec 02 2012
    
  • Maple
    f:= proc(n) local F;
       F:= numtheory:-factorset(n);
       if map(t -> t mod 4, F) <> {1} then return 0 fi;
       2^(nops(F)-1)
    end proc:
    seq(f(n),n=1..100); # Robert Israel, Jan 11 2016
  • Mathematica
    Table[a0=IntegerExponent[n,2]; If[n==1 || a0>0, cnt=0, m=n/2^a0; p=Transpose[FactorInteger[m]][[1]]; c=Count[p, _?(Mod[#,4]==1 &)]; If[c==Length[p], cnt=2^(c-1), 0]]; cnt, {n,100}]
    a[n_] := If[n==1||EvenQ[n]||Length[Select[FactorInteger[n], Mod[#[[1]], 4]==3 &]] >0, 0, 2^(Length[FactorInteger[n]]-1)]; Array[a, 100] (* Frank M Jackson, Jan 28 2018 *)
  • PARI
    a(n)={my(m=0,k=n,n2=n*n,k2,l2);
    while(1,k=k-1;k2=k*k;l2=n2-k2;if(l2>k2,break);if(issquare(l2),if(gcd(n,k)==1,m++)));  return(m);} \\ Stanislav Sykora, Mar 23 2015

Formula

a(n) = [q^n] T(q), n >= 1, where T(q) = Sum_{r>=1,s>=1} rpr(2*r-1, 2*s)*q^c(r,s), with rpr(k,l) = 1 if gcd(k,l) = 1, otherwise 0, and c(r,s) = (2*r-1)^2 + (2s)^2. - Wolfdieter Lang, Jan 10 2016
If all prime factors of n are in A002144 then a(n) = 2^(A001221(n)-1), otherwise a(n) = 0. - Robert Israel, Jan 11 2016
a(4*n+1) = A106594(n), other terms are 0. - Andrey Zabolotskiy, Jan 21 2022

A055527 Shortest other leg of a Pythagorean triangle with n as length of a leg.

Original entry on oeis.org

4, 3, 12, 8, 24, 6, 12, 24, 60, 5, 84, 48, 8, 12, 144, 24, 180, 15, 20, 120, 264, 7, 60, 168, 36, 21, 420, 16, 480, 24, 44, 288, 12, 15, 684, 360, 52, 9, 840, 40, 924, 33, 24, 528, 1104, 14, 168, 120, 68, 39, 1404, 72, 48, 33, 76, 840, 1740, 11, 1860, 960, 16, 48, 72
Offset: 3

Views

Author

Henry Bottomley, May 22 2000

Keywords

Comments

From Alex Ratushnyak, Mar 30 2014: (Start)
Least positive k such that n^2 + k^2 is a square.
For odd n, a(n) <= 4*triangular((n-1)/2), because n^2 + (4 * triangular((n-1)/2))^2 = ((n^2+1)/2) ^ 2, which is a perfect square since n is odd.
For n = 4*k+2, a(n) <= 8*triangular(k), because (4k+2)^2 + (4*k*(k+1))^2 = (4*k^2 + 4*k + 2)^2. (End)

Crossrefs

See A082183 for a similar sequence involving triangular numbers.

Programs

  • Mathematica
    Table[k = 1; While[! IntegerQ[Sqrt[n^2 + k^2]], k++]; k, {n, 3, 100}] (* T. D. Noe, Apr 02 2014 *)

Formula

a(n) = sqrt(A055526(n)^2-n^2) = 2*A054436/n.

A055523 Longest other leg of a Pythagorean triangle with n as length of a leg.

Original entry on oeis.org

4, 3, 12, 8, 24, 15, 40, 24, 60, 35, 84, 48, 112, 63, 144, 80, 180, 99, 220, 120, 264, 143, 312, 168, 364, 195, 420, 224, 480, 255, 544, 288, 612, 323, 684, 360, 760, 399, 840, 440, 924, 483, 1012, 528, 1104, 575, 1200, 624, 1300, 675, 1404, 728, 1512, 783
Offset: 3

Views

Author

Henry Bottomley, May 22 2000

Keywords

Crossrefs

Programs

  • Maple
    seq(`if`(n::even, (n/2-1)*(n/2+1), (n-1)*(n+1)/2), n=3..100); # Robert Israel, Dec 16 2014
  • Mathematica
    a[n_Integer/;n>=3]:=(3 (n^2-2)+(-1)^(n+1) (n^2+2))/8 (* Todd Silvestri, Dec 16 2014 *)
  • PARI
    Vec(x^3*(x^3-3*x-4)/((x-1)^3*(x+1)^3) + O(x^100)) \\ Colin Barker, Sep 15 2014

Formula

a(n) = 2*A055522(n)/n = sqrt(A055524(n)^2-n^2).
a(2k) = (k-1)*(k+1), a(2k+1) = 2k*(k+1).
a(n) = 3*a(n-2)-3*a(n-4)+a(n-6). G.f.: x^3*(x^3-3*x-4) / ((x-1)^3*(x+1)^3). - Colin Barker, Sep 15 2014
a(n) = (3*(n^2-2)+(-1)^(n+1)*(n^2+2))/8. - Todd Silvestri, Dec 16 2014
E.g.f.: 1 + (3*x^2/8 + 3*x/8 - 3/4)*exp(x) + (-x^2/8 + x/8 - 1/4)*exp(-x). - Robert Israel, Dec 16 2014
Previous Showing 11-20 of 55 results. Next