A372535
G.f. A(x) satisfies: A(x)^5 = A(x^5) / (1 - 5*x).
Original entry on oeis.org
1, 1, 3, 11, 44, 185, 801, 3547, 15961, 72710, 334463, 1550679, 7236463, 33955573, 160075762, 757689991, 3599019810, 17148240314, 81930357294, 392402777679, 1883531191109, 9058879060004, 43647287768424, 210645440011836, 1018118905986455, 4927692357099550, 23880341433363005
Offset: 1
G.f.: A(x) = x + x^2 + 3*x^3 + 11*x^4 + 44*x^5 + 185*x^6 + 801*x^7 + 3547*x^8 + 15961*x^9 + 72710*x^10 + 334463*x^11 + 1550679*x^12 +...
where A(x)^5 = A(x^5) / (1 - 5*x).
Also, when expressed as the EULER transform of A054662,
A(x) = x/( (1-x) * (1-x^2)^2 * (1-x^3)^8 * (1-x^4)^30 * (1-x^5)^125 * (1-x^6)^516 * (1-x^7)^2232 * (1-x^8)^9750 * ... * (1-x^n)^A054662(n) * ... ).
RELATED SERIES.
A(x)^5 = x^5 + 5*x^6 + 25*x^7 + 125*x^8 + 625*x^9 + 3126*x^10 + 15630*x^11 + 78150*x^12 + 390750*x^13 + 1953750*x^14 + 9768753*x^15 + ...
-
{a(n) = my(A=x); for(i=1, n, A = ( subst(A, x, x^5)/(1 - 5*x +x*O(x^n)))^(1/5)); polcoeff(A, n)}
for(n=1, 50, print1(a(n), ", "))
-
/* EULER transform of A054662 */
{A054662(n) = 1/(5*n) * sumdiv(n, d, if(gcd(d, 5)==1, moebius(d)*5^(n/d), 0 ) )} \\ after Joerg Arndt's program in A046211
{a(n) = my(A = x/prod(m=1, n, (1-x^m +x*O(x^n))^A054662(m))); polcoeff(A, n)}
for(n=1, 30, print1(a(n), ", "))
A372870
G.f. A(x) satisfies A(x)^3 = A(x^3) / (1 - 3*x)^3 with A(0)=1.
Original entry on oeis.org
1, 3, 9, 28, 84, 252, 758, 2274, 6822, 20471, 61413, 184239, 552729, 1658187, 4974561, 14923714, 44771142, 134313426, 402940361, 1208821083, 3626463249, 10879389971, 32638169913, 97914509739, 293743529832, 881230589496, 2643691768488, 7931075307172
Offset: 0
A(x)^3 = 1 + 9*x + 54*x^2 + 273*x^3 + 1242*x^4 + 5265*x^5 + 21231*x^6 + ... .
-
b(n, k) = sumdiv(n, d, (gcd(d, k)==1)*(moebius(d)*k^(n/d)))/(k*n);
my(N=30, x='x+O('x^N)); Vec(1/prod(k=1, N, (1 - x^k)^b(k, 3))^3)
A054666
Number of 6-ary Lyndon words with trace 1 mod 6.
Original entry on oeis.org
1, 3, 12, 54, 259, 1296, 6665, 34992, 186624, 1007769, 5496925, 30233088, 167444795, 932906715, 5224277604, 29386561536, 165947641615, 940369969152, 5345260877285, 30467987000514, 174102782860140, 997134120017175
Offset: 1
A054663
Number of monic irreducible polynomials over GF(5) with zero trace.
Original entry on oeis.org
1, 2, 8, 30, 124, 516, 2232, 9750, 43400, 195248, 887784, 4068740, 18780048, 87191964, 406900992, 1907343750, 8975758272, 42385503300, 200773540296, 953674218720, 4541306267856, 21674415838068, 103660251783288
Offset: 1
A054664
Number of 4-ary Lyndon words of length n with trace 0 mod 4.
Original entry on oeis.org
1, 1, 5, 14, 51, 165, 585, 2032, 7280, 26163, 95325, 349350, 1290555, 4792905, 17895679, 67106816, 252645135, 954429840, 3616814565, 13743869130, 52357696365, 199911109725, 764877654105, 2932030657200, 11258999068416
Offset: 1
-
a[n_] := 1/(4 n) Sum[GCD[d, 4] MoebiusMu[d] 4^(n/d), {d, Divisors[n]}];
Array[a, 30] (* Andrey Zabolotskiy, Dec 19 2020 *)
A054665
Number of 6-ary Lyndon words with trace 0 mod 6.
Original entry on oeis.org
1, 2, 11, 51, 259, 1282, 6665, 34938, 186612, 1007510, 5496925, 30231741, 167444795, 932900050, 5224277345, 29386526544, 165947641615, 940369781244, 5345260877285, 30467985992745, 174102782853475, 997134114520250
Offset: 1
A054667
Number of 6-ary Lyndon words with trace 2 mod 6.
Original entry on oeis.org
1, 2, 12, 51, 259, 1284, 6665, 34938, 186624, 1007510, 5496925, 30231792, 167444795, 932900050, 5224277604, 29386526544, 165947641615, 940369782528, 5345260877285, 30467985992745, 174102782860140, 997134114520250
Offset: 1
A386647
G.f. A(x) satisfies: A(x)^7 = A(x^7) / (1 - 7*x).
Original entry on oeis.org
1, 1, 4, 20, 110, 638, 3828, 23515, 146968, 930797, 5957100, 38450370, 249927394, 1634140604, 10738638021, 70875009760, 469546933535, 3121106054760, 20807373517870, 139080864081230, 931841783576460, 6256651942091035, 42090203778813320, 283651372136401905, 1914646755015446620
Offset: 1
G.f.: A(x) = x + x^2 + 4*x^3 + 20*x^4 + 110*x^5 + 638*x^6 + 3828*x^7 + 23515*x^8 + 146968*x^9 + 930797*x^10 + 5957100*x^11 + 38450370*x^12 +...
where A(x)^7 = A(x^7) / (1 - 7*x).
Also, when expressed as the EULER transform of A373277,
A(x) = x/( (1-x) * (1-x^2)^3 * (1-x^3)^16 * (1-x^4)^84 * (1-x^5)^480 * (1-x^6)^2792 * (1-x^7)^16807 * (1-x^8)^102900 * ... * (1-x^n)^A373277(n) * ... ).
RELATED SERIES.
A(x)^7 = x^7 + 7*x^8 + 49*x^9 + 343*x^10 + 2401*x^11 + 16807*x^12 + 117649*x^13 + 823544*x^14 + 5764808*x^15 + ...
-
{a(n) = my(A=x); for(i=1, n, A = ( subst(A, x, x^7)/(1 - 7*x +x*O(x^n)))^(1/7)); polcoeff(A, n)}
for(n=1, 50, print1(a(n), ", "))
-
/* EULER transform of A373277 */
{A373277(n) = 1/(7*n) * sumdiv(n, d, (gcd(d, 7)==1)*(moebius(d)*7^(n/d)))} \\ after Seiichi Manyama in A373277
{a(n) = my(A = x/prod(m=1, n, (1-x^m +x*O(x^n))^A373277(m))); polcoeff(A, n)}
for(n=1, 30, print1(a(n), ", "))
Comments