cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-24 of 24 results.

A381888 Triangle read by rows: T(n, k) = (n + 1) * Sum_{j=k..n} binomial(n, j) * Eulerian1(j, j - k).

Original entry on oeis.org

1, 2, 2, 3, 9, 3, 4, 28, 28, 4, 5, 75, 165, 75, 5, 6, 186, 786, 786, 186, 6, 7, 441, 3311, 6181, 3311, 441, 7, 8, 1016, 12888, 40888, 40888, 12888, 1016, 8, 9, 2295, 47529, 241191, 404361, 241191, 47529, 2295, 9, 10, 5110, 168670, 1312750, 3445510, 3445510, 1312750, 168670, 5110, 10
Offset: 0

Views

Author

Peter Luschny, Mar 11 2025

Keywords

Comments

Consider A381706, the number of permutations of k chosen numbers in [n] with i-1 descents, as a sequence of squares of size 1x1, 2x2, 3x3, ..., as displayed in the example section of A381706. Conjecture: T(n, k) is the sum of column k+1 of the (n+1)th square; in other words: T(n, k) = Sum_{j=0..n} b(n+1, j+1, k+1).

Examples

			Triangle starts:
  [0] 1;
  [1] 2,    2;
  [2] 3,    9,     3;
  [3] 4,   28,    28,      4;
  [4] 5,   75,   165,     75,      5;
  [5] 6,  186,   786,    786,    186,      6;
  [6] 7,  441,  3311,   6181,   3311,    441,     7;
  [7] 8, 1016, 12888,  40888,  40888,  12888,  1016,    8;
  [8] 9, 2295, 47529, 241191, 404361, 241191, 47529, 2295, 9;
		

Crossrefs

Cf. A046802, A173018 (Eulerian1), A122045 (Euler), A058877 (column 1), A007526 (row sums), A381706 (generalized Eulerian).

Programs

  • Maple
    T := (n, k) -> (n + 1)*add(binomial(n, j)*combinat:-eulerian1(j, j - k), j = k .. n):
    for n from 0 to 8 do seq(T(n, k), k=0..n) od;
    # Using the e.g.f.:
    egf := ((y - 1)*(y*exp(x*y)*(x*y + 1) - (x + 1)*exp(x*(2*y - 1))))/(exp(x*(y - 1)) - y)^2:
    ser := simplify(series(egf, x, 10)):
    seq(seq(n!*coeff(coeff(ser, x, n), y, k), k = 0..n), n = 0..9);
  • SageMath
    # Using function eulerian1 from A173018.
    def T(n: int, k: int) -> int:
        return (n + 1) * sum(binomial(n, j) * eulerian1(j, j-k) for j in (k..n))
    def Trow(n) -> list[int]: return [T(n, k) for k in (0..n)]
    for n in (0..8): print(f"{n}: ", Trow(n))

Formula

T(n, k) = n! * [y^k] [x^n] ((y - 1)*(y*exp(x*y)*(x*y + 1) - (x + 1)*exp(x*(2*y - 1)))) / (exp(x*(y - 1)) - y)^2.
Sum_{k=0..n} (-1)^k * T(n, k) = (-1)^n * (n + 1) * Euler(n).
T(n, k) = (n + 1) * A046802(n, k).

A168423 Triangle read by rows: expansion of (1 - x)/(exp(t)*(1 - x*exp(t*(1 - x)))).

Original entry on oeis.org

1, -1, 1, 1, -1, 1, -1, 1, 1, 1, 1, -1, 1, 7, 1, -1, 1, 1, 21, 21, 1, 1, -1, 1, 51, 161, 51, 1, -1, 1, 1, 113, 813, 813, 113, 1, 1, -1, 1, 239, 3361, 7631, 3361, 239, 1, -1, 1, 1, 493, 12421, 53833, 53833, 12421, 493, 1, 1, -1, 1, 1003, 42865, 320107, 607009, 320107, 42865
Offset: 0

Views

Author

Roger L. Bagula, Nov 25 2009

Keywords

Comments

This sequence was derived from the Eulerian number umbral calculus expansion and A046802 by taking the exp(t) term and inverting it.
What is interesting here is the '1,-1' terms that appear.
I had thought I would get "1,5,1" not "1,7,1" from this function.
An OEIS search came up with A046739 which has the same internal symmetric number structure.
Inverse binomial transform of Eulerian numbers A123125. [Paul Barry, May 10 2011]

Examples

			{1},
{-1, 1},
{1, -1, 1},
{-1, 1, 1, 1},
{1, -1, 1, 7, 1},
{-1, 1, 1, 21, 21, 1},
{1, -1, 1, 51, 161, 51, 1},
{-1, 1, 1, 113, 813, 813, 113, 1},
{1, -1, 1, 239, 3361, 7631, 3361, 239, 1},
{-1, 1, 1, 493, 12421, 53833, 53833, 12421, 493, 1},
{1, -1, 1, 1003, 42865, 320107, 607009, 320107, 42865, 1003, 1}
		

Crossrefs

Cf. A046802, A046739, A000166 (row sums), A123125.

Programs

  • Mathematica
    p[t_] = (1 - x)/(Exp[t]*(1 - x*Exp[t*(1 - x)]))
    a = Table[ CoefficientList[FullSimplify[ExpandAll[n!*SeriesCoefficient[ Series[p[t], {t, 0, 30}], n]]], x], {n, 0, 10}];
    Flatten[a]

Formula

E.g.f. sum(T(n,k) t^n/n! x^k) = p(x,t) = (1 - x)/(exp(t)*(1 - x*exp(t*(1 - x))))
T(n,k)=sum{j=0..n, (-1)^(n-j)*C(n,j)*A123125(j,k)}. [Paul Barry, May 10 2011]

A318143 Coefficients of the polynomials generated by the e.g.f. cosh(x*z)*(x-1)/(x-exp(z*(x-1))), triangle read by rows, T(n,k) for 0 <= k <= n.

Original entry on oeis.org

1, 1, 0, 1, 1, 1, 1, 4, 4, 0, 1, 11, 17, 7, 1, 1, 26, 76, 66, 16, 0, 1, 57, 317, 467, 237, 31, 1, 1, 120, 1212, 2962, 2612, 806, 64, 0, 1, 247, 4321, 17215, 24145, 13519, 2641, 127, 1, 1, 502, 14644, 92554, 199192, 178486, 65884, 8434, 256, 0
Offset: 0

Views

Author

Peter Luschny, Aug 19 2018

Keywords

Examples

			[n\k][0,   1,    2,     3,     4,     5,    6,   7,  8]
[0]   1;
[1]   1,   0;
[2]   1,   1,    1;
[3]   1,   4,    4,     0;
[4]   1,  11,   17,     7,     1;
[5]   1,  26,   76,    66,    16,     0;
[6]   1,  57,  317,   467,   237,    31,    1;
[7]   1, 120, 1212,  2962,  2612,   806,   64,   0;
[8]   1, 247, 4321, 17215, 24145, 13519, 2641, 127, 1;
		

Crossrefs

Row sums are (-1)^n*A009179(n).
Alternating row sums are 1.
Polynomials evaluated at x = 0 are 1.
T(n, n-1) = A051049(n-1) for n >= 1.
T(n, 1) = A000295(n) for n >= 0.

Programs

  • Maple
    gf := cosh(x*z)*(x-1)/(x-exp(z*(x-1))):
    ser := series(gf, z, 12): p := n -> normal(n!*coeff(ser, z, n)):
    seq(seq(coeff(p(n),x,k), k=0..n), n=0..10);

A343804 T(n, k) = Sum_{j=k..n} binomial(n, j)*E2(j, j-k), where E2 are the Eulerian numbers A201637. Triangle read by rows, T(n, k) for 0 <= k <= n.

Original entry on oeis.org

1, 1, 1, 1, 4, 1, 1, 15, 11, 1, 1, 64, 96, 26, 1, 1, 325, 824, 448, 57, 1, 1, 1956, 7417, 6718, 1779, 120, 1, 1, 13699, 71595, 96633, 43411, 6429, 247, 1, 1, 109600, 746232, 1393588, 944618, 243928, 21898, 502, 1, 1, 986409, 8403000, 20600856, 19521210, 7739362, 1250774, 71742, 1013, 1
Offset: 0

Views

Author

Peter Luschny, Apr 30 2021

Keywords

Examples

			Triangle starts:
[0] 1
[1] 1, 1
[2] 1, 4,      1
[3] 1, 15,     11,      1
[4] 1, 64,     96,      26,       1
[5] 1, 325,    824,     448,      57,       1
[6] 1, 1956,   7417,    6718,     1779,     120,     1
[7] 1, 13699,  71595,   96633,    43411,    6429,    247,     1
[8] 1, 109600, 746232,  1393588,  944618,   243928,  21898,   502,   1
[9] 1, 986409, 8403000, 20600856, 19521210, 7739362, 1250774, 71742, 1013, 1
		

Crossrefs

Row sums: A084262.
Cf. A046802 (Eulerian first order).

Programs

  • Maple
    T := (n, k) -> add(binomial(n, r)*combinat:-eulerian2(r, r-k), r = k..n):
    seq(seq(T(n, k), k = 0..n), n = 0..9);
Previous Showing 21-24 of 24 results.