A381888
Triangle read by rows: T(n, k) = (n + 1) * Sum_{j=k..n} binomial(n, j) * Eulerian1(j, j - k).
Original entry on oeis.org
1, 2, 2, 3, 9, 3, 4, 28, 28, 4, 5, 75, 165, 75, 5, 6, 186, 786, 786, 186, 6, 7, 441, 3311, 6181, 3311, 441, 7, 8, 1016, 12888, 40888, 40888, 12888, 1016, 8, 9, 2295, 47529, 241191, 404361, 241191, 47529, 2295, 9, 10, 5110, 168670, 1312750, 3445510, 3445510, 1312750, 168670, 5110, 10
Offset: 0
Triangle starts:
[0] 1;
[1] 2, 2;
[2] 3, 9, 3;
[3] 4, 28, 28, 4;
[4] 5, 75, 165, 75, 5;
[5] 6, 186, 786, 786, 186, 6;
[6] 7, 441, 3311, 6181, 3311, 441, 7;
[7] 8, 1016, 12888, 40888, 40888, 12888, 1016, 8;
[8] 9, 2295, 47529, 241191, 404361, 241191, 47529, 2295, 9;
-
T := (n, k) -> (n + 1)*add(binomial(n, j)*combinat:-eulerian1(j, j - k), j = k .. n):
for n from 0 to 8 do seq(T(n, k), k=0..n) od;
# Using the e.g.f.:
egf := ((y - 1)*(y*exp(x*y)*(x*y + 1) - (x + 1)*exp(x*(2*y - 1))))/(exp(x*(y - 1)) - y)^2:
ser := simplify(series(egf, x, 10)):
seq(seq(n!*coeff(coeff(ser, x, n), y, k), k = 0..n), n = 0..9);
-
# Using function eulerian1 from A173018.
def T(n: int, k: int) -> int:
return (n + 1) * sum(binomial(n, j) * eulerian1(j, j-k) for j in (k..n))
def Trow(n) -> list[int]: return [T(n, k) for k in (0..n)]
for n in (0..8): print(f"{n}: ", Trow(n))
A168423
Triangle read by rows: expansion of (1 - x)/(exp(t)*(1 - x*exp(t*(1 - x)))).
Original entry on oeis.org
1, -1, 1, 1, -1, 1, -1, 1, 1, 1, 1, -1, 1, 7, 1, -1, 1, 1, 21, 21, 1, 1, -1, 1, 51, 161, 51, 1, -1, 1, 1, 113, 813, 813, 113, 1, 1, -1, 1, 239, 3361, 7631, 3361, 239, 1, -1, 1, 1, 493, 12421, 53833, 53833, 12421, 493, 1, 1, -1, 1, 1003, 42865, 320107, 607009, 320107, 42865
Offset: 0
{1},
{-1, 1},
{1, -1, 1},
{-1, 1, 1, 1},
{1, -1, 1, 7, 1},
{-1, 1, 1, 21, 21, 1},
{1, -1, 1, 51, 161, 51, 1},
{-1, 1, 1, 113, 813, 813, 113, 1},
{1, -1, 1, 239, 3361, 7631, 3361, 239, 1},
{-1, 1, 1, 493, 12421, 53833, 53833, 12421, 493, 1},
{1, -1, 1, 1003, 42865, 320107, 607009, 320107, 42865, 1003, 1}
-
p[t_] = (1 - x)/(Exp[t]*(1 - x*Exp[t*(1 - x)]))
a = Table[ CoefficientList[FullSimplify[ExpandAll[n!*SeriesCoefficient[ Series[p[t], {t, 0, 30}], n]]], x], {n, 0, 10}];
Flatten[a]
A318143
Coefficients of the polynomials generated by the e.g.f. cosh(x*z)*(x-1)/(x-exp(z*(x-1))), triangle read by rows, T(n,k) for 0 <= k <= n.
Original entry on oeis.org
1, 1, 0, 1, 1, 1, 1, 4, 4, 0, 1, 11, 17, 7, 1, 1, 26, 76, 66, 16, 0, 1, 57, 317, 467, 237, 31, 1, 1, 120, 1212, 2962, 2612, 806, 64, 0, 1, 247, 4321, 17215, 24145, 13519, 2641, 127, 1, 1, 502, 14644, 92554, 199192, 178486, 65884, 8434, 256, 0
Offset: 0
[n\k][0, 1, 2, 3, 4, 5, 6, 7, 8]
[0] 1;
[1] 1, 0;
[2] 1, 1, 1;
[3] 1, 4, 4, 0;
[4] 1, 11, 17, 7, 1;
[5] 1, 26, 76, 66, 16, 0;
[6] 1, 57, 317, 467, 237, 31, 1;
[7] 1, 120, 1212, 2962, 2612, 806, 64, 0;
[8] 1, 247, 4321, 17215, 24145, 13519, 2641, 127, 1;
Alternating row sums are 1.
Polynomials evaluated at x = 0 are 1.
T(n, n-1) =
A051049(n-1) for n >= 1.
-
gf := cosh(x*z)*(x-1)/(x-exp(z*(x-1))):
ser := series(gf, z, 12): p := n -> normal(n!*coeff(ser, z, n)):
seq(seq(coeff(p(n),x,k), k=0..n), n=0..10);
A343804
T(n, k) = Sum_{j=k..n} binomial(n, j)*E2(j, j-k), where E2 are the Eulerian numbers A201637. Triangle read by rows, T(n, k) for 0 <= k <= n.
Original entry on oeis.org
1, 1, 1, 1, 4, 1, 1, 15, 11, 1, 1, 64, 96, 26, 1, 1, 325, 824, 448, 57, 1, 1, 1956, 7417, 6718, 1779, 120, 1, 1, 13699, 71595, 96633, 43411, 6429, 247, 1, 1, 109600, 746232, 1393588, 944618, 243928, 21898, 502, 1, 1, 986409, 8403000, 20600856, 19521210, 7739362, 1250774, 71742, 1013, 1
Offset: 0
Triangle starts:
[0] 1
[1] 1, 1
[2] 1, 4, 1
[3] 1, 15, 11, 1
[4] 1, 64, 96, 26, 1
[5] 1, 325, 824, 448, 57, 1
[6] 1, 1956, 7417, 6718, 1779, 120, 1
[7] 1, 13699, 71595, 96633, 43411, 6429, 247, 1
[8] 1, 109600, 746232, 1393588, 944618, 243928, 21898, 502, 1
[9] 1, 986409, 8403000, 20600856, 19521210, 7739362, 1250774, 71742, 1013, 1
Cf.
A046802 (Eulerian first order).
-
T := (n, k) -> add(binomial(n, r)*combinat:-eulerian2(r, r-k), r = k..n):
seq(seq(T(n, k), k = 0..n), n = 0..9);
Comments