cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A349767 Numbers m such that 2^m - m is divisible by 5.

Original entry on oeis.org

3, 14, 16, 17, 23, 34, 36, 37, 43, 54, 56, 57, 63, 74, 76, 77, 83, 94, 96, 97, 103, 114, 116, 117, 123, 134, 136, 137, 143, 154, 156, 157, 163, 174, 176, 177, 183, 194, 196, 197, 203, 214, 216, 217, 223, 234, 236, 237, 243, 254, 256, 257, 263, 274, 276, 277, 283, 294, 296, 297, 303
Offset: 1

Views

Author

Bernard Schott, Dec 10 2021

Keywords

Comments

For every prime p, there are infinitely many numbers m such that 2^m - m (A000325) is divisible by p, here are numbers m corresponding to p = 5.
Equivalently, numbers that are congruent to {3, 14, 16, 17, 23, 34, 36, 37, 43, 54, 56, 57} mod 60, <==> numbers that are congruent to {+-3, +-14, +-16, +-17, +-23, +-34} mod 60.

References

  • Michael Doob, The Canadian Mathematical Olympiad & L'Olympiade Mathématique du Canada 1969-1993, Canadian Mathematical Society & Société Mathématique du Canada, Problem 4, 1983, page 158, 1993.

Crossrefs

Similar with: A299174 (p = 2), A047257 (p = 3), this sequence (p = 5).

Programs

  • Maple
    filter:= n -> 2^n-n mod 5 = 0 : select(filter, [$1..400]);
  • Mathematica
    Select[Range[300], PowerMod[2, #, 5] == Mod[#, 5] &] (* Amiram Eldar, Dec 10 2021 *)
  • PARI
    isok(m) = Mod(2, 5)^m == Mod(m, 5); \\ Michel Marcus, Dec 10 2021
    
  • Python
    def ok(n): return pow(2, n, 5) == n%5
    print([k for k in range(357) if ok(k)]) # Michael S. Branicky, Dec 10 2021

A317613 Permutation of the nonnegative integers: lodumo_4 of A047247.

Original entry on oeis.org

2, 3, 0, 1, 4, 5, 6, 7, 10, 11, 8, 9, 12, 13, 14, 15, 18, 19, 16, 17, 20, 21, 22, 23, 26, 27, 24, 25, 28, 29, 30, 31, 34, 35, 32, 33, 36, 37, 38, 39, 42, 43, 40, 41, 44, 45, 46, 47, 50, 51, 48, 49, 52, 53, 54, 55, 58, 59, 56, 57, 60, 61, 62, 63, 66, 67, 64
Offset: 0

Views

Author

Keywords

Comments

Write n in base 8, then apply the following substitution to the rightmost digit: '0'->'2, '1'->'3', and vice versa. Convert back to decimal.
A self-inverse permutation: a(a(n)) = n.
Array whose columns are, in this order, A047463, A047621, A047451 and A047522, read by rows.

Examples

			a(25) = a('3'1') = '3'3' = 27.
a(26) = a('3'2') = '3'0' = 24.
a(27) = a('3'3') = '3'1' = 25.
a(28) = a('3'4') = '3'4' = 28.
a(29) = a('3'5') = '3'5' = 29.
The sequence as array read by rows:
  A047463, A047621, A047451, A047522;
        2,       3,       0,       1;
        4,       5,       6,       7;
       10,      11,       8,       9;
       12,      13,      14,      15;
       18,      19,      16,      17;
       20,      21,      22,      23;
       26,      27,      24,      25;
       28,      29,      30,      31;
  ...
		

Crossrefs

Programs

  • Magma
    m:=100; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((x^7+x^5+3*x^3-2*x^2-x+2)/((1-x)^2*(x^6+x^4+ x^2+1)))); // G. C. Greubel, Sep 25 2018
  • Mathematica
    Table[(4*(Floor[1/4 Mod[2*n + 4, 8]] - Floor[1/4 Mod[n + 2, 8]]) + 2*n)/2, {n, 0, 100}]
    f[n_] := Block[{id = IntegerDigits[n, 8]}, FromDigits[ Join[Most@ id /. {{} -> {0}}, {id[[-1]] /. {0 -> 2, 1 -> 3, 2 -> 0, 3 -> 1}}], 8]]; Array[f, 67, 0] (* or *)
    CoefficientList[ Series[(x^7 + x^5 + 3x^3 - 2x^2 - x + 2)/((x - 1)^2 (x^6 + x^4 + x^2 + 1)), {x, 0, 70}], x] (* or *)
    LinearRecurrence[{2, -2, 2, -2, 2, -2, 2, -1}, {2, 3, 0, 1, 4, 5, 6, 7}, 70] (* Robert G. Wilson v, Aug 01 2018 *)
  • Maxima
    makelist((4*(floor(mod(2*n + 4, 8)/4) - floor(mod(n + 2, 8)/4)) + 2*n)/2, n, 0, 100);
    
  • PARI
    my(x='x+O('x^100)); Vec((x^7+x^5+3*x^3-2*x^2-x+2)/((1-x)^2*(x^6+x^4+ x^2+1))) \\ G. C. Greubel, Sep 25 2018
    

Formula

a(n) = 2*a(n-1) - 2*a(n-2) + 2*a(n-3) - 2*a(n-4) + 2*a(n-5) - 2*a(n-6) + 2*a(n-7) - a(n-8), n > 7.
a(n) = (4*(floor(((2*n + 4) mod 8)/4) - floor(((n + 2) mod 8)/4)) + 2*n)/2.
a(n) = lod_4(A047247(n+1)).
a(4*n) = A047463(n+1).
a(4*n+1) = A047621(n+1).
a(4*n+2) = A047451(n+1).
a(4*n+3) = A047522(n+1).
a(A042948(n)) = A047596(n+1).
a(A042964(n+1)) = A047551(n+1).
G.f.: (x^7 + x^5 + 3*x^3 - 2*x^2 - x + 2)/((x-1)^2 * (x^2+1) * (x^4+1)).
E.g.f.: x*exp(x) + cos(x) + sin(x) + cos(x/sqrt(2))*cosh(x/sqrt(2)) + (sqrt(2)*cos(x/sqrt(2)) - sin(x/sqrt(2)))*sinh(x/sqrt(2)).
a(n+8) = a(n) + 8 . - Philippe Deléham, Mar 09 2023
Sum_{n>=3} (-1)^(n+1)/a(n) = 1/6 + log(2). - Amiram Eldar, Mar 12 2023
Previous Showing 11-12 of 12 results.