cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-44 of 44 results.

A110554 Column 11 of table A105552.

Original entry on oeis.org

56, 285, 954, 2366, 4711, 7936, 11712, 15448, 18450, 20155, 20329, 19078, 16746, 13780, 10644, 7712, 5235, 3325, 1970, 1081, 544, 247, 99, 33, 8, 1
Offset: 1

Views

Author

Alford Arnold, Jul 30 2005

Keywords

Comments

A105552 is constructed by summing values from ordered Gaussian polynomials, therefore the present begins with one value each from the following diagonal sequences and sums to A047970(11).

Examples

			a(6) = A107601(6) = 7936.
		

Crossrefs

A167633 Number of ordered n-tuples of positive integers such that the largest value is n and the first value is odd.

Original entry on oeis.org

1, 1, 14, 74, 1363, 13953, 330628, 5094436, 148124741, 3062897555, 105624547606, 2746180200462, 109589993167831, 3435877666633237, 155759360424218888, 5720220913807900808, 290376774291325403401, 12228041680671237910119, 687155830301443577149594
Offset: 1

Views

Author

Alois P. Heinz, Nov 07 2009

Keywords

Examples

			a(3) = 14, because there are 14 ordered 3-tuples of positive integers such that the largest value is 3 and the first value is odd: 113, 123, 131, 132, 133, 311, 312, 313, 321, 322, 323, 331, 332, 333.
		

Crossrefs

Diagonal of A123685. Cf. A047969.

Programs

  • Maple
    a:= n-> (Matrix (`if` (irem(n, 2)=0, [n/2, 0], [1 +(n-1)/2*3, 1])). Matrix ([[2*n-1, 1], [n*(1-n), 0]]) ^(n-1))[1, 2]: seq (a(n), n=1..20);

Formula

a(n) = [x^(n-1)] z/((n*x-1)*((n-1)*x-1)), where z = (n/2*x) if n is even, and z = (1-(n-1)/2*x) else.

A378203 Number of palindromic n-ary words of length n that include the last letter of their respective alphabet.

Original entry on oeis.org

1, 1, 1, 5, 7, 61, 91, 1105, 1695, 26281, 40951, 771561, 1214423, 26916709, 42664987, 1087101569, 1732076671, 49868399761, 79771413871, 2560599031177, 4108933742199, 145477500542221, 234040800869107, 9059621800971105, 14605723004036255, 613627780919407801
Offset: 0

Views

Author

John Tyler Rascoe, Nov 19 2024

Keywords

Examples

			a(0) = 1: ().
a(1) = 1: (a).
a(2) = 1: (b,b).
a(3) = 5: (a,c,a), (b,c,b), (c,a,c), (c,b,c), (c,c,c).
		

Crossrefs

Programs

  • Maple
    a:= n-> (h-> n^h-`if`(n=0, 0, (n-1)^h))(ceil(n/2)):
    seq(a(n), n=0..25);  # Alois P. Heinz, Nov 21 2024
  • Mathematica
    h[n_] := Ceiling[n/2];a[n_] := n^h[n] - (n - 1)^h[n];Join[{1},Table[a[n],{n,25}]] (* James C. McMahon, Nov 21 2024 *)
  • PARI
    h(n) = {ceil(n/2)}
    a(n) = {n^h(n)-(n-1)^h(n)}
    
  • Python
    def A378203(n): return n**(m:=n+1>>1)-(n-1)**m if n else 1 # Chai Wah Wu, Nov 21 2024

Formula

a(n) = n^h(n) - (n-1)^h(n) for n > 0, where h(n) = ceiling(n/2).
a(n) = A047969(n-1,h(n)-1) for n > 0.

A112996 A table distributing the values 1 2 5 14 43 144 523 2048 38486 182905 ... A047970 based on row sums of subtables counting permutations of partitions.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 7, 4, 2, 1, 15, 12, 10, 5, 1, 31, 32, 36, 30, 14, 1, 63, 80, 112, 124, 100, 43, 1, 127, 192, 320, 432, 472, 360, 144, 1, 255, 448, 864, 1360, 1832, 1924, 1390, 523, 1, 511, 1024, 2240, 3958, 6320, 8280
Offset: 1

Views

Author

Alford Arnold, Nov 03 2005

Keywords

Comments

The next diagonal, 2 10 36 112 320 864 2240 ... is 1 4 12 32 80 192 448 ... plus 1 6 24 80 240 672 1792 ...

Examples

			The table begins
1
1 1
1 3 1
1 7 4 2
1 15 12 10 5
1 31 32 36 30 14
the third diagonal is 1 4 12 32 80 192 448 ... A001787 which, in turn,
is the row sum of the below table
1
2 2
3 6 3
4 12 12 4
5 20 30 20 5
which counts the permutations of
3; 32, 31; 322, 321, 311; 3222, 3221, 3211, 3111; etc.
		

Crossrefs

Previous Showing 41-44 of 44 results.