cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 155 results. Next

A325317 a(n) = A048250(n) XOR A162296(n), where XOR is the bitwise-XOR, A003987.

Original entry on oeis.org

1, 3, 4, 7, 6, 12, 8, 15, 13, 18, 12, 28, 14, 24, 24, 31, 18, 23, 20, 10, 32, 36, 24, 60, 31, 42, 32, 56, 30, 72, 32, 63, 48, 54, 48, 67, 38, 60, 56, 90, 42, 96, 44, 20, 46, 72, 48, 124, 57, 89, 72, 18, 54, 96, 72, 120, 80, 90, 60, 40, 62, 96, 104, 127, 84, 144, 68, 126, 96, 144, 72, 187, 74, 114, 124, 108, 96, 168, 80
Offset: 1

Views

Author

Antti Karttunen, Apr 21 2019

Keywords

Crossrefs

Programs

  • Mathematica
    Array[BitXor @@ Map[Total, {#3, Complement[#2, #3]}] & @@ {#1, #2, Select[#2, SquareFreeQ]} & @@ {#, Divisors[#]} &, 79] (* Michael De Vlieger, Apr 21 2019 *)
  • PARI
    A048250(n) = factorback(apply(p -> p+1,factor(n)[,1]));
    A162296(n) = sumdiv(n, d, d*(1-issquarefree(d)));
    A325317(n) = bitxor(A048250(n),A162296(n));

Formula

a(n) = A003987(A048250(n), A162296(n)).
a(n) = A000203(n) - 2*A325318(n) = A325316(n) - A325318(n).

A325318 a(n) = A048250(n) AND A162296(n), where AND is the bitwise-AND, A004198.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8, 0, 16, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 12, 0, 0, 0, 0, 0, 0, 0, 32, 16, 0, 0, 0, 0, 2, 0, 40, 0, 12, 0, 0, 0, 0, 0, 64, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 16, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 64, 0, 0, 0, 0, 0, 16, 32, 2, 0, 0, 0, 40, 0
Offset: 1

Views

Author

Antti Karttunen, Apr 21 2019

Keywords

Crossrefs

Programs

  • Mathematica
    Array[BitAnd @@ Map[Total, {#3, Complement[#2, #3]}] & @@ {#1, #2, Select[#2, SquareFreeQ]} & @@ {#, Divisors[#]} &, 105] (* Michael De Vlieger, Apr 21 2019 *)
  • PARI
    A048250(n) = factorback(apply(p -> p+1,factor(n)[,1]));
    A162296(n) = sumdiv(n, d, d*(1-issquarefree(d)));
    A325318(n) = bitand(A048250(n),A162296(n));

Formula

a(n) = A004198(A048250(n), A162296(n)).
a(n) = A000203(n) - A325316(n) = (A000203(n) - A325317(n))/2.
a(n) = A325316(n) - A325317(n).

A325381 Lexicographically earliest sequence such that a(i) = a(j) => A048250(i) = A048250(j) and A126795(i) = A126795(j) for all i, j.

Original entry on oeis.org

1, 2, 3, 2, 4, 5, 6, 2, 3, 7, 8, 9, 10, 11, 12, 2, 13, 5, 14, 7, 15, 16, 17, 9, 4, 18, 3, 19, 20, 21, 15, 2, 22, 23, 24, 9, 25, 26, 27, 7, 28, 29, 30, 31, 12, 32, 24, 9, 6, 7, 33, 18, 34, 5, 35, 36, 37, 38, 39, 40, 41, 42, 15, 2, 43, 44, 45, 23, 46, 47, 35, 9, 48, 49, 12, 50, 51, 52, 37, 7, 3, 53, 43, 54, 55, 56, 57, 31, 58, 59, 60, 61, 62, 47, 63, 9, 64, 11
Offset: 1

Views

Author

Antti Karttunen, May 08 2019

Keywords

Comments

Restricted growth sequence transform of the ordered pair [A048250(n), A126795(n)].

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A048250(n) = factorback(apply(p -> p+1,factor(n)[,1]));
    A126795(n) = gcd(n,A048250(n));
    v325381 = rgs_transform(vector(up_to,n,[A048250(n),A126795(n)]));
    A325381(n) = v325381[n];

A325382 Lexicographically earliest sequence such that for all i, j, a(i) = a(j) => f(i) = f(j) where f(n) = [A048250(n), A126795(n)] for all other numbers, except f(p) = -(p mod 2) for primes.

Original entry on oeis.org

1, 2, 3, 4, 3, 5, 3, 4, 6, 7, 3, 8, 3, 9, 10, 4, 3, 5, 3, 7, 11, 12, 3, 8, 13, 14, 6, 15, 3, 16, 3, 4, 17, 18, 19, 8, 3, 20, 21, 7, 3, 22, 3, 23, 10, 24, 3, 8, 25, 7, 26, 14, 3, 5, 27, 28, 29, 30, 3, 31, 3, 32, 11, 4, 33, 34, 3, 18, 35, 36, 3, 8, 3, 37, 10, 38, 39, 40, 3, 7, 6, 41, 3, 42, 43, 44, 45, 23, 3, 46, 47, 48, 49, 36, 50, 8, 3, 9, 17, 7, 3, 51, 3, 14
Offset: 1

Views

Author

Antti Karttunen, May 08 2019

Keywords

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A048250(n) = factorback(apply(p -> p+1,factor(n)[,1]));
    A126795(n) = gcd(n,A048250(n));
    Aux325382(n) = if(isprime(n),-(n%2),[A048250(n),A126795(n)]);
    v325382 = rgs_transform(vector(up_to,n,Aux325382(n)));
    A325382(n) = v325382[n];

A344996 a(n) = A048250(n) * A051709(n).

Original entry on oeis.org

0, 0, 0, 3, 0, 24, 0, 9, 4, 36, 0, 96, 0, 48, 48, 21, 0, 108, 0, 180, 64, 72, 0, 240, 6, 84, 16, 288, 0, 1440, 0, 45, 96, 108, 96, 372, 0, 120, 112, 468, 0, 2304, 0, 576, 288, 144, 0, 528, 8, 234, 144, 756, 0, 360, 144, 768, 160, 180, 0, 4608, 0, 192, 448, 93, 168, 4608, 0, 1188, 192, 4032, 0, 900, 0, 228, 336, 1440, 192
Offset: 1

Views

Author

Antti Karttunen, Jun 05 2021

Keywords

Crossrefs

Cf. also A344997.

Programs

Formula

a(n) = A048250(n) * A051709(n).
a(n) = -[Sum_{d|n} mu(d)^2*d] * [Sum_{d|n, dA001065(d)].
a(n) = -Product(p_i + 1) * [Sum_{d|n, dA008683(n/d)*A001065(d)], where p_i are distinct primes dividing n.
Sum_{k=1..n} a(k) ~ c * n^3 / 3, where c = zeta(3) * Product_{p prime} (1 + 1/p^2 - 1/p^3) + 6/Pi^2 - 2 = 0.177775281124... . - Amiram Eldar, Dec 04 2023

A345052 a(n) = A003557(n) * A048250(n) * A173557(n).

Original entry on oeis.org

1, 3, 8, 6, 24, 24, 48, 12, 24, 72, 120, 48, 168, 144, 192, 24, 288, 72, 360, 144, 384, 360, 528, 96, 120, 504, 72, 288, 840, 576, 960, 48, 960, 864, 1152, 144, 1368, 1080, 1344, 288, 1680, 1152, 1848, 720, 576, 1584, 2208, 192, 336, 360, 2304, 1008, 2808, 216, 2880, 576, 2880, 2520, 3480, 1152, 3720, 2880, 1152, 96
Offset: 1

Views

Author

Antti Karttunen, Jun 08 2021

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := (p^2 - 1)*p^(e - 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Oct 16 2022 *)
  • PARI
    A345052(n) = { my(f=factor(n)); prod(i=1, #f~, ((f[i,1]^2)-1)*(f[i,1]^(f[i, 2]-1))); };

Formula

Multiplicative with a(p^e) = (p^2 - 1) * p^(e-1).
a(n) = A007434(n) / A003557(n) = A003557(n) * A048250(n) * A173557(n).
From Amiram Eldar, Oct 16 2022: (Start)
Sum_{k=1..n} a(k) ~ c * n^3, where c = 2/Pi^2 = 0.202642... (A185197).
Sum_{n>=1} 1/a(n) = A065484.
a(n) = A000010(n) * A048250(n). (End)

A369259 Lexicographically earliest infinite sequence such that a(i) = a(j) => A003557(i) = A003557(j), A048250(i) = A048250(j) and A342671(i) = A342671(j), for all i, j >= 1.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 15, 23, 24, 25, 26, 27, 28, 29, 21, 30, 31, 32, 31, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 29, 31, 43, 44, 45, 46, 47, 48, 49, 46, 50, 51, 52, 53, 54, 55, 39, 56, 57, 58, 59, 60, 61, 62, 59, 46, 63, 64, 65, 66, 67, 62, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 59
Offset: 1

Views

Author

Antti Karttunen, Jan 25 2024

Keywords

Comments

Restricted growth sequence transform of the triplet [A003557(j), A048250(i), A342671(n)].
For all i, j >= 1:
a(i) = a(j) => A323368(i) = A323368(j) => A291751(i) = A291751(j),
a(i) = a(j) => A369260(i) = A369260(j) => A286603(i) = A286603(j).

Crossrefs

Differs from related A296089 and A323368 for the first time at n=79, where a(79) = 69, while A296089(79) = A323368(79) = 51.

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A003557(n) = (n/factorback(factor(n)[, 1]));
    A003961(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    A048250(n) = if(n<1, 0, sumdiv(n, d, if(core(d)==d, d)));
    A342671(n) = gcd(sigma(n), A003961(n));
    Aux369259(n) = [A003557(n), A048250(n), A342671(n)];
    v369259 = rgs_transform(vector(up_to, n, Aux369259(n)));
    A369259(n) = v369259[n];

A063964 Numbers k such that k and k+1 have the same sum of squarefree divisors, or sqf(k) = sqf(k+1), where sqf(k) = A048250(k).

Original entry on oeis.org

11, 14, 224, 957, 1334, 1634, 2685, 9347, 13915, 16260, 20145, 20335, 33998, 37236, 42251, 42818, 51624, 55308, 56419, 56975, 71874, 74918, 77748, 79824, 79826, 79833, 84134, 93632, 106600, 111506, 120680, 122073, 138237, 142116, 147454
Offset: 1

Views

Author

Jason Earls, Sep 04 2001

Keywords

Crossrefs

Cf. A048250.

Programs

  • Mathematica
    sqs[n_] := Times@@(1 + FactorInteger[n][[;; , 1]]); seq={}; s1 = 1; Do[s2 = sqs[n]; If[s2 == s1, AppendTo[seq, n-1]]; s1 = s2, {n, 2, 10^5}]; seq (* Amiram Eldar, Aug 18 2019 *)
  • PARI
    sqf(n) = sumdiv(n,d, if(issquarefree(d),d,0)); for(n=1,10^7, if(sqf(n)==sqf(n+1),print(n)))
    
  • PARI
    { n=0; s=0; for (m=1, 10^9, t=sumdiv(m + 1, d, if(issquarefree(d), d, 0)); if(s==t, write("b063964.txt", n++, " ", m); if (n==170, break)); s=t ) } \\ Harry J. Smith, Sep 04 2009

A332230 Lexicographically earliest sequence such that a(i) = a(j) => f(i) = f(j), where f(n) = [A003557(n), A046523(n), A048250(n)] for all other numbers, except f(2^k) = 0 for k >= 2.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 4, 8, 9, 10, 11, 12, 13, 13, 4, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 4, 29, 30, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 41, 46, 47, 48, 41, 49, 50, 51, 52, 53, 54, 55, 56, 4, 57, 58, 59, 60, 55, 58, 61, 62, 63, 64, 65, 66, 55, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 76
Offset: 1

Views

Author

Antti Karttunen, Feb 22 2020

Keywords

Comments

For all i, j:
A295300(i) = A295300(j) => a(i) = a(j),
a(i) = a(j) => A048250(i) = A048250(j),
a(i) = a(j) => A332455(i) = A332455(j),
a(i) = a(j) => A332459(i) = A332459(j).

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A003557(n) = n/factorback(factor(n)[, 1]); \\ From A003557
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); };  \\ From A046523
    A048250(n) = if(n<1, 0, sumdiv(n, d, if(core(d)==d, d)));
    A209229(n) = (n && !bitand(n,n-1));
    A291750(n) = (1/2)*(2 + ((A003557(n)+A048250(n))^2) - A003557(n) - 3*A048250(n));
    Aux332230(n) = if((n>2)&&A209229(n),0,(1/2)*(2 + ((A046523(n) + A291750(n))^2) - A046523(n) - 3*A291750(n)));
    v332230 = rgs_transform(vector(up_to,n,Aux332230(n)));
    A332230(n) = v332230[n];

A071375 Smallest m such that sum of squarefree divisors of m equals n; a(n) = 0 if no solution to A048250(x) = n exists.

Original entry on oeis.org

1, 0, 2, 3, 0, 5, 0, 7, 0, 0, 0, 6, 0, 13, 0, 0, 0, 10, 0, 19, 0, 0, 0, 14, 0, 0, 0, 0, 0, 29, 0, 21, 0, 0, 0, 22, 0, 37, 0, 0, 0, 26, 0, 43, 0, 0, 0, 33, 0, 0, 0, 0, 0, 34, 0, 39, 0, 0, 0, 38, 0, 61, 0, 0, 0, 0, 0, 67, 0, 0, 0, 30, 0, 73, 0, 0, 0, 0, 0, 57, 0, 0, 0, 65, 0, 0, 0, 0, 0, 58, 0, 0, 0, 0
Offset: 1

Views

Author

Labos Elemer, May 22 2002

Keywords

Examples

			n=256: a(256)=217=7.31, all divisors are squarefree and 1+7+31+217=256=n.
		

Crossrefs

Cf. A048250.

Programs

  • Mathematica
    ffi[x_] := Flatten[FactorInteger[x]] lf[x_] := Length[FactorInteger[x]] ba[x_] := Table[Part[ffi[x], 2 * w - 1], {w, 1, lf[x]}] cor[x_] := Apply[Times, ba[x]] t = Table[0, {256}]; Do[s = DivisorSigma[1, cor[n]]; If[s < 257 && t[[s]] == 0, t[[s]] = n], {n, 10^6}]; t

Formula

a(n)=Min{x; A048250[x]=n}, a(n)=0 if no solutions.

Extensions

Definition corrected by Jaroslav Krizek, May 28 2014
Previous Showing 31-40 of 155 results. Next