cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A158526 n and (1 + 2*n + 2*n^2) are primes.

Original entry on oeis.org

2, 5, 7, 17, 19, 29, 47, 79, 97, 109, 137, 139, 149, 157, 167, 199, 229, 347, 349, 389, 409, 467, 479, 547, 577, 599, 709, 719, 757, 857, 929, 937, 967, 1039, 1069, 1087, 1187, 1229, 1259, 1399, 1409, 1447, 1559, 1579, 1597, 1607, 1657, 1697, 1699, 1709
Offset: 1

Views

Author

Zak Seidov, Mar 20 2009

Keywords

Comments

Numbers n such that A048395(n) is semiprime, or A048395(n)/n is prime.
Or, primes in A027861. Also, (1+2*n+2*n^2) are in A027862. - Zak Seidov, Sep 19 2015

Examples

			A048395(2)=26=2*13, A048395(5)=305=5*61, A048395(7)=791=7*113.
		

Crossrefs

Cf. A048395 (sum of consecutive nonsquares), A001358 (semiprimes).

Programs

A364361 Table read by rows. T(n, k) = Sum_{j=0..n-k} k*binomial(k, j)*binomial(n - j, k).

Original entry on oeis.org

0, 0, 1, 0, 3, 2, 0, 5, 10, 3, 0, 7, 26, 21, 4, 0, 9, 50, 75, 36, 5, 0, 11, 82, 189, 164, 55, 6, 0, 13, 122, 387, 516, 305, 78, 7, 0, 15, 170, 693, 1284, 1155, 510, 105, 8, 0, 17, 226, 1131, 2724, 3405, 2262, 791, 136, 9, 0, 19, 290, 1725, 5156, 8415, 7734, 4025, 1160, 171, 10
Offset: 0

Views

Author

Peter Luschny, Jul 30 2023

Keywords

Examples

			The triangle begins:
  [0] 0;
  [1] 0,  1;
  [2] 0,  3,   2;
  [3] 0,  5,  10,   3;
  [4] 0,  7,  26,   21,    4;
  [5] 0,  9,  50,   75,   36,    5;
  [6] 0, 11,  82,  189,  164,   55,    6;
  [7] 0, 13, 122,  387,  516,  305,   78,   7;
  [8] 0, 15, 170,  693, 1284, 1155,  510, 105,   8;
  [9] 0, 17, 226, 1131, 2724, 3405, 2262, 791, 136, 9;
Seen as an array:
  [0] 0,  1,   2,   3,     4,     5,      6,      7, ...  A001477
  [1] 0,  3,  10,   21,   36,    55,     78,    105, ...  A014105
  [2] 0,  5,  26,   75,  164,   305,    510,    791, ...  A048395
  [3] 0,  7,  50,  189,  516,  1155,   2262,   4025, ...
  [4] 0,  9,  82,  387, 1284,  3405,   7734,  15687, ...
  [5] 0, 11, 122,  693, 2724,  8415,  21918,  50281, ...
  [6] 0, 13, 170, 1131, 5156, 18265,  53934, 138775, ...
  [7] 0, 15, 226, 1725, 8964, 35915, 118950, 340473, ...
    A005408|A069894
		

Crossrefs

Cf. A364553 (row sums), A364634 (main diagonal).
Columns: A005408, A069894.

Programs

  • Maple
    T := (n, k) -> local j; add(k*binomial(k, j)*binomial(n-j, k), j = 0..n-k):
    seq(seq(T(n, k), k = 0..n), n = 0..10);

Formula

T(2*n, n) = n * LegendreP(n, 3).

A139309 Array by antidiagonals, sum of non-k-gonal numbers between consecutive k-gonal numbers.

Original entry on oeis.org

0, 0, 2, 0, 5, 9, 0, 9, 26, 24, 0, 14, 51, 75, 50, 0, 20, 84, 153, 164, 90, 0, 27, 125, 258, 342, 305, 147, 0, 35, 174, 390, 584, 645, 510, 224, 0, 44, 231, 549, 890, 1110, 1089, 791, 324, 0, 54, 296, 735, 1260, 1700, 1884, 1701, 1160, 450, 0, 65, 369, 948, 1694
Offset: 0

Views

Author

Jonathan Vos Post, Jun 07 2008

Keywords

Comments

The n=1 column is A000096(k) = n*(n+3)/2. The k=3 row is the sum of nontriangular numbers between successive triangular numbers (A006002) = the sum of n consecutive integers beginning with (n-th triangular number)+1 = (n*(n+1)^2)/2. The k=4 row is the sum of nonsquares between successive squares (A048395) = 2*n^3 + 2*n^2 + n. The k=5 row is the sum of non-pentagonal numbers between successive pentagonal numbers. The k-th row is the sum of non-k-gonal numbers between successive k-gonal numbers. Each column is a quadratic sequence. Each row is a cubic sequence.

Examples

			The array begins:
========================================================================
...|.n=0.|.n=1.|.n=2.|.n=3.|.n=4.|.n=5.|.n=6.|.n=7.|.n=8.|.n=9.|.in.OEIS
====|=====|=====|=====|=====|=====|=====|=====|=====|=====|=====|========
k=3.|..0..|..2..|..9..|..24.|..50.|..90.|.147.|.224.|.324.|.450.|.A006002
k=4.|..0..|..5..|.26..|..75.|.164.|.305.|.510.|.791.|1160.|1629.|.A048395
k=5.|..0..|..9..|.51..|.153.|.342.|.645.|1089.|...................not.yet
k=6.|..0..|.14..|.84..|.258.|.584.|...............................not.yet
k=7.|..0..|.20..|125..|.390.|.....................................not.yet
k=8.|..0..|.27..|174..|...........................................not.yet
k=9.|..0..|.35..|231..|...........................................not.yet
k=10|..0..|.44..|296..|...........................................not.yet
========================================================================
		

Crossrefs

Programs

  • Maple
    A139309 := proc(k,n) n*(k-2)*((k-2)*n^2+1+2*n)/2 ; end: for d from 3 to 16 do for n from 0 to d-3 do printf("%d,", A139309(d-n,n)) ; od: od: # R. J. Mathar, Jun 12 2008

Formula

T(k,n) = n(k-2)((k-2)n^2+1+2n)/2. - R. J. Mathar, Jun 12 2008

Extensions

More terms from R. J. Mathar, Jun 12 2008
Previous Showing 11-13 of 13 results.