Original entry on oeis.org
1, 8, 23, 60, 149, 364, 883, 2136, 5161, 12464, 30095, 72660, 175421, 423508, 1022443, 2468400, 5959249, 14386904, 34733063, 83853036, 202439141, 488731324, 1179901795, 2848534920, 6876971641, 16602478208, 40081928063
Offset: 0
-
Accumulate[LinearRecurrence[{2,1},{1,7},40]] (* Harvey P. Dale, Jul 22 2011 *)
LinearRecurrence[{3, -1, -1},{1, 8, 23},27] (* Ray Chandler, Aug 03 2015 *)
A374429
Triangle read by rows: T(n, k) = ((3*(-1)^k + 1)/2)*abs(qStirling2(n, k, -1)). Polynomials related to the Lucas and Fibonacci numbers.
Original entry on oeis.org
2, 0, -1, 0, -1, 2, 0, -1, 2, -1, 0, -1, 2, -2, 2, 0, -1, 2, -3, 4, -1, 0, -1, 2, -4, 6, -3, 2, 0, -1, 2, -5, 8, -6, 6, -1, 0, -1, 2, -6, 10, -10, 12, -4, 2, 0, -1, 2, -7, 12, -15, 20, -10, 8, -1, 0, -1, 2, -8, 14, -21, 30, -20, 20, -5, 2
Offset: 0
Triangle starts:
[0] [2]
[1] [0, -1]
[2] [0, -1, 2]
[3] [0, -1, 2, -1]
[4] [0, -1, 2, -2, 2]
[5] [0, -1, 2, -3, 4, -1]
[6] [0, -1, 2, -4, 6, -3, 2]
[7] [0, -1, 2, -5, 8, -6, 6, -1]
[8] [0, -1, 2, -6, 10, -10, 12, -4, 2]
[9] [0, -1, 2, -7, 12, -15, 20, -10, 8, -1]
.
Table of interpolated sequences:
| | A039834 & A000045 | A000032 | A000129 | A048654 |
| n | P(n, 1) | P(n,-1) |-2^nP(n,1/2)|2^nP(n,-1/2)|
| | Fibonacci | Lucas | Pell | Pell* |
| 1 | -1 | 1 | 1 | 1 |
| 2 | 1 | 3 | 0 | 4 |
| 3 | 0 | 4 | 1 | 9 |
| 4 | 1 | 7 | 2 | 22 |
| 5 | 1 | 11 | 5 | 53 |
| 6 | 2 | 18 | 12 | 128 |
| 7 | 3 | 29 | 29 | 309 |
| 8 | 5 | 47 | 70 | 746 |
| 9 | 8 | 76 | 169 | 1801 |
| 10 | 13 | 123 | 408 | 4348 |
-
from sage.combinat.q_analogues import q_stirling_number2
def T(n, k):
return ((3*(-1)^k + 1)//2)*abs(q_stirling_number2(n, k, -1))
for n in range(10): print([T(n, k) for k in range(n + 1)])
def P(n, x):
if n < 0: return P(-n, -x)
return sum(T(n, k)*x^k for k in range(n + 1))
# Lucas and Fibonacci combined
print([P(n, 1) for n in range(-6, 9)])
# Table of interpolated sequences
print("| | A039834 & A000045 | A000032 | A000129 | A048654 |")
print("| n | P(n, 1) | P(n,-1) |-2^nP(n,1/2)|2^nP(n,-1/2)|")
f = "| {0:2d} | {1:9d} | {2:4d} | {3:7d} | {4:7d} |"
for n in range(1, 11): print(f.format(n, P(n, 1), P(n, -1),
int(-2**n*P(n, 1/2)), int(2**n*P(n, -1/2))))
Comments