cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-22 of 22 results.

A267032 Difference between smallest integer square >= 10^(2*n+1) and 10^(2*n+1).

Original entry on oeis.org

6, 24, 489, 4569, 14129, 147984, 2149284, 25191729, 621806289, 5259630921, 19998666404, 102500044289, 3925449108561, 13071591635856, 42248099518244, 4224809951824400, 43007675962234436, 506034404021388356, 6997839444766224, 699783944476622400
Offset: 0

Views

Author

Gwillim Law, Jan 09 2016

Keywords

Examples

			a(0) = 6 = 4^2 - 10; a(1) = 24 = 32^2 - 1000.
		

Crossrefs

Cf. A238454 (a similar sequence with powers of 2). - Michel Marcus, Jan 17 2016

Programs

  • Maple
    f:= proc(n) local s;
      s:= isqrt(10^(2*n+1));
      if s^2 < 10^(2*n+1) then s:= s+1 fi;
      s^2 - 10^(2*n+1)
    end proc:
    seq(f(n),n=0..40); # Robert Israel, Jan 17 2016
  • Mathematica
    dsis[n_]:=Module[{c=10^(2n+1)},(Floor[Sqrt[c]]+1)^2-c]; Array[dsis,20,0] (* Harvey P. Dale, Apr 27 2019 *)
  • Python
    from math import isqrt
    def A267032(n): return (isqrt(m:=10**((n<<1)+1))+1)**2-m # Chai Wah Wu, Apr 27 2023

Formula

a(n) = A068527(A013715(n)). - Michel Marcus, Jan 17 2016

A076621 Least square greater than the product of two successive primes.

Original entry on oeis.org

9, 16, 36, 81, 144, 225, 324, 441, 676, 900, 1156, 1521, 1764, 2025, 2500, 3136, 3600, 4096, 4761, 5184, 5776, 6561, 7396, 8649, 9801, 10404, 11025, 11664, 12321, 14400, 16641, 17956, 19044, 20736, 22500, 23716, 25600, 27225, 28900, 30976, 32400, 34596, 36864
Offset: 1

Views

Author

Reinhard Zumkeller, Oct 22 2002

Keywords

Crossrefs

Programs

  • Mathematica
    Ceiling[Sqrt[Times@@#]]^2&/@Partition[Prime[Range[50]],2,1] (* Harvey P. Dale, Aug 26 2013 *)
  • Python
    from sympy import prime, primerange
    def aupton(terms):
        primes = list(primerange(3, prime(terms+1)+1))
        return [9] + [((p+q)//2)**2 for p, q in zip(primes[:-1], primes[1:])]
    print(aupton(43)) # Michael S. Branicky, Sep 16 2021

Formula

a(n) = A048761(A006094(n)).
a(n) = prime(n)*prime(n+1)+((prime(n)-prime(n+1))/2)^2 = A006094(n) + A074927(n) for n > 1.
a(n) = ((prime(n)+prime(n+1))/2)^2 for n > 1.
Previous Showing 21-22 of 22 results.