A067345
Square array read by antidiagonals: T(n,k)=(T(n,k-1)*n^2-Catalan(k-1))/(n-1) with a(n,1)=1 and a(1,k)=Catalan(k) where Catalan(k)=C(2k,k)/(k+1)=A000108(k).
Original entry on oeis.org
1, 2, 1, 5, 3, 1, 14, 10, 4, 1, 42, 35, 17, 5, 1, 132, 126, 74, 26, 6, 1, 429, 462, 326, 137, 37, 7, 1, 1430, 1716, 1446, 726, 230, 50, 8, 1, 4862, 6435, 6441, 3858, 1434, 359, 65, 9, 1, 16796, 24310, 28770, 20532, 8952, 2582, 530, 82, 10, 1, 58786, 92378, 128750
Offset: 1
A110488
A number triangle based on the Catalan numbers.
Original entry on oeis.org
1, 1, 1, 2, 2, 1, 5, 5, 3, 1, 14, 14, 10, 4, 1, 42, 42, 35, 17, 5, 1, 132, 132, 126, 74, 26, 6, 1, 429, 429, 462, 326, 137, 37, 7, 1, 1430, 1430, 1716, 1446, 726, 230, 50, 8, 1, 4862, 4862, 6435, 6441, 3858, 1434, 359, 65, 9, 1, 16796, 16796, 24310, 28770, 20532, 8952, 2582, 530, 82, 10, 1
Offset: 0
Rows begin
1;
1, 1;
2, 2, 1;
5, 5, 3, 1;
14, 14, 10, 4, 1;
42, 42, 35, 17, 5, 1;
-
T[n_, 0] := CatalanNumber[n]; T[n_, 1] := CatalanNumber[n]; T[n_, n_] := 1; T[n_, k_] := Sum[2*(j + 1)*(k - 1)^j*Binomial[2 (n - k) + 1, n - k - j]/(n - k + j + 2), {j, 0, n - k}]; Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* G. C. Greubel, Aug 28 2017 *)
A134283
A certain partition array in Abramowitz-Stegun (A-St)order, called M_0(3).
Original entry on oeis.org
1, 3, 1, 10, 6, 1, 35, 20, 9, 9, 1, 126, 70, 60, 30, 27, 12, 1, 462, 252, 210, 100, 105, 180, 27, 40, 54, 15, 1, 1716, 924, 756, 700, 378, 630, 300, 270, 140, 360, 108, 50, 90, 18, 1, 6435, 3432, 2772, 2520, 1225, 1386, 2268, 2100, 945, 900, 504, 1260, 600, 1080, 81
Offset: 1
[1]; [3,1]; [10,6,1]; [35,20,9,9,1]; [126,70,60,30,27,12,1]; ...
A117375
Riordan array (1/(1-3x*c(x)),xc(x)), c(x) the g.f. of A000108.
Original entry on oeis.org
1, 3, 1, 12, 4, 1, 51, 17, 5, 1, 222, 74, 23, 6, 1, 978, 326, 104, 30, 7, 1, 4338, 1446, 468, 142, 38, 8, 1, 19323, 6441, 2103, 657, 189, 47, 9, 1, 86310, 28770, 9447, 3006, 903, 246, 57, 10, 1, 386250, 128750, 42440, 13670, 4223, 1217, 314, 68, 11, 1, 1730832
Offset: 0
Triangle begins
1,
3, 1,
12, 4, 1,
51, 17, 5, 1,
222, 74, 23, 6, 1,
978, 326, 104, 30, 7, 1,
4338, 1446, 468, 142, 38, 8, 1
Production array begins
3, 1
3, 1, 1
3, 1, 1, 1
3, 1, 1, 1, 1
3, 1, 1, 1, 1, 1
3, 1, 1, 1, 1, 1, 1
3, 1, 1, 1, 1, 1, 1, 1
3, 1, 1, 1, 1, 1, 1, 1, 1
... - _Philippe Deléham_, Mar 05 2013
A076037
Square array read by antidiagonals in which row n has g.f. (1-(n-1)*x*C)/(1-n*x*C) where C = (1/2-1/2*(1-4*x)^(1/2))/x = g.f. for Catalan numbers A000108.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 3, 5, 5, 1, 1, 4, 10, 14, 14, 1, 1, 5, 17, 35, 42, 42, 1, 1, 6, 26, 74, 126, 132, 132, 1, 1, 7, 37, 137, 326, 462, 429, 429, 1, 1, 8, 50, 230, 726, 1446, 1716, 1430, 1430, 1, 1, 9, 65, 359, 1434, 3858, 6441, 6435, 4862, 4862, 1, 1, 10, 82
Offset: 0
Array begins
1 1 1 2 5 14 42 ... (n=0)
1 1 2 5 14 42 132 ... (n=1)
1 1 3 10 35 126 ... (n=2)
1 1 4 17 74 326 ...
-
C(x)=(1/2-1/2*(1-4*x)^(1/2))/x; D(x)=(1-(m-1)*x*C(x))/(1-m*x*C(x)); for(i=0,15, forstep(m=i,0,-1,print1(polcoeff(D(x),i-m),","));print()) (Klasen)
More terms from Lambert Klasen (lambert.klasen(AT)gmx.de), Jan 12 2005
A076038
Square array read by ascending antidiagonals in which row n has g.f. C/(1-n*x*C) where C = (1/2-1/2*(1-4*x)^(1/2))/x = g.f. for Catalan numbers A000108.
Original entry on oeis.org
1, 1, 1, 1, 2, 2, 1, 3, 5, 5, 1, 4, 10, 14, 14, 1, 5, 17, 35, 42, 42, 1, 6, 26, 74, 126, 132, 132, 1, 7, 37, 137, 326, 462, 429, 429, 1, 8, 50, 230, 726, 1446, 1716, 1430, 1430, 1, 9, 65, 359, 1434, 3858, 6441, 6435, 4862, 4862, 1, 10, 82, 530, 2582, 8952, 20532, 28770, 24310, 16796, 16796
Offset: 0
Array begins as:
1 1 2 5 14 42 ... (n=0)
1 2 5 14 42 132 ... (n=1)
1 3 10 35 126 ... (n=2)
1 4 17 74 326 ...
...
-
Unprotect[Power]; Power[0,0]=1; Protect[Power]; A[n_, m_]:= 1/(m+1)*Sum[Binomial[2*m-k, m]*(k+1)*(n-m)^k,{k,0,m}]; Table[A[n,m],{n,0,10},{m,0,n}]//Flatten (* Stefano Spezia, Sep 01 2025 *)
A370376
Number of compositions of n where there are A025174(k) sorts of part k.
Original entry on oeis.org
1, 1, 6, 39, 262, 1791, 12372, 86052, 601374, 4217151, 29648766, 208855791, 1473509736, 10408539844, 73596075552, 520797997464, 3687846866382, 26128671296127, 185209915856802, 1313356295909877, 9316374980571702, 66105343198654407, 469174119885678972
Offset: 0
-
my(N=30, x='x+O('x^N)); Vec(1/(1-sum(k=1, N, binomial(3*k, k)*x^k)/3))
A171616
Triangle T : T(n,k)= binomial(n,k)*A000957(n+1-k).
Original entry on oeis.org
1, 0, 1, 1, 0, 1, 2, 3, 0, 1, 6, 8, 6, 0, 1, 18, 30, 20, 10, 0, 1, 57, 108, 90, 40, 15, 0, 1, 186, 399, 378, 210, 70, 21, 0, 1, 622, 1488, 1596, 1008, 420, 112, 28, 0, 1, 2120, 5598, 6696, 4788, 2268, 756, 168, 36, 0, 1, 7338, 21200, 27990, 22320, 11970, 4536, 1260, 240, 45
Offset: 0
Triangle begins : 1 ; 0,1 ; 1,0,1 ; 2,3,0,1 ; 6,8,6,0,1 ; 18,30,20,10,0,1 ; ...
Comments