A182609
Number of conjugacy classes in GL(n,19).
Original entry on oeis.org
1, 18, 360, 6840, 130302, 2475720, 47045520, 893864520, 16983555840, 322687560618, 6131066120640, 116490256285320, 2213314916460120, 42052983412605480, 799006685733239040, 15181127028931412160, 288441413566677788022, 5480386857766875373560
Offset: 0
Cf.
A006951,
A006952,
A049314,
A049315,
A049316,
A182603,
A182604,
A182605,
A182606,
A182607,
A182608,
A182610,
A182611,
A182612.
-
/* The program does not work for n>4: */ [1] cat [NumberOfClasses(GL(n, 19)) : n in [1..4]];
-
with(numtheory):
b:= proc(n) b(n):= add(phi(d)*19^(n/d), d=divisors(n))/n-1 end:
a:= proc(n) a(n):= `if`(n=0, 1,
add(add(d*b(d), d=divisors(j)) *a(n-j), j=1..n)/n)
end:
seq(a(n), n=0..30); # Alois P. Heinz, Nov 03 2012
-
b[n_] := Sum[EulerPhi[d]*19^(n/d), {d, Divisors[n]}]/n-1; a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d*b[d], {d, Divisors[j]}]*a[n-j], {j, 1, n}]/n]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Feb 17 2014, after Alois P. Heinz *)
-
N=66; x='x+O('x^N);
gf=prod(n=1,N, (1-x^n)/(1-19*x^n) );
v=Vec(gf)
/* Joerg Arndt, Jan 24 2013 */
A182612
Number of conjugacy classes in GL(n,27).
Original entry on oeis.org
1, 26, 728, 19656, 531414, 14348152, 387419760, 10460332792, 282429516096, 7625596933890, 205891131543552, 5559060551656248, 150094635282119528, 4052555152616676888, 109418989131110078784, 2954312706539971597184, 79766443076861647780830
Offset: 0
Cf.
A006951,
A006952,
A049314,
A049315,
A049316,
A182603,
A182604,
A182605,
A182606,
A182607,
A182608,
A182609,
A182610,
A182611.
-
/* The program does not work for n>4: */ [1] cat [ NumberOfClasses(GL(n, 27)) : n in [1..4] ];
-
with(numtheory):
b:= proc(n) b(n):= add(phi(d)*27^(n/d), d=divisors(n))/n-1 end:
a:= proc(n) a(n):= `if`(n=0, 1,
add(add(d*b(d), d=divisors(j)) *a(n-j), j=1..n)/n)
end:
seq(a(n), n=0..20); # Alois P. Heinz, Nov 03 2012
-
b[n_] := Sum[EulerPhi[d]*27^(n/d), {d, Divisors[n]}]/n-1; a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d*b[d], {d, Divisors[j]}]*a[n-j], {j, 1, n}]/n]; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Feb 17 2014, after Alois P. Heinz *)
-
N=66; x='x+O('x^N);
gf=prod(n=1,N, (1-x^n)/(1-27*x^n) );
v=Vec(gf)
/* Joerg Arndt, Jan 24 2013 */
A182610
Number of conjugacy classes in GL(n,23).
Original entry on oeis.org
1, 22, 528, 12144, 279818, 6435792, 148035360, 3404812752, 78310972608, 1801152369478, 41426510921664, 952809751186128, 21914624425304688, 504036361781716368, 11592836324384010432, 266635235460831961152, 6132610415677439376122, 141050039560581098947824
Offset: 0
Cf.
A006951,
A006952,
A049314,
A049315,
A049316,
A182603,
A182604,
A182605,
A182606,
A182607,
A182608,
A182609,
A182611,
A182612.
-
/* The program does not work for n>4: */ [1] cat [NumberOfClasses(GL(n, 23)) : n in [1..4]];
-
with(numtheory):
b:= proc(n) b(n):= add(phi(d)*23^(n/d), d=divisors(n))/n-1 end:
a:= proc(n) a(n):= `if`(n=0, 1,
add(add(d*b(d), d=divisors(j)) *a(n-j), j=1..n)/n)
end:
seq(a(n), n=0..20); # Alois P. Heinz, Nov 03 2012
-
b[n_] := Sum[EulerPhi[d]*23^(n/d), {d, Divisors[n]}]/n-1; a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d*b[d], {d, Divisors[j]}]*a[n-j], {j, 1, n}]/n]; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Feb 17 2014, after Alois P. Heinz *)
-
N=66; x='x+O('x^N);
gf=prod(n=1,N, (1-x^n)/(1-23*x^n) );
v=Vec(gf)
/* Joerg Arndt, Jan 24 2013 */
A182611
Number of conjugacy classes in GL(n,25).
Original entry on oeis.org
1, 24, 624, 15600, 390600, 9764976, 244140000, 6103499376, 152587874400, 3814696859400, 95367431234400, 2384185780844400, 59604644765235024, 1490116119130470000, 37252902984364860000, 931322574609121110624, 23283064365380605500600, 582076609134515127375600
Offset: 0
Cf.
A006951,
A006952,
A049314,
A049315,
A049316,
A182603,
A182604,
A182605,
A182606,
A182607,
A182608,
A182609,
A182610,
A182612.
-
/* The program does not work for n>4: */ [1] cat [NumberOfClasses(GL(n, 25)) : n in [1..4]];
-
with(numtheory):
b:= proc(n) b(n):= add(phi(d)*25^(n/d), d=divisors(n))/n-1 end:
a:= proc(n) a(n):= `if`(n=0, 1,
add(add(d*b(d), d=divisors(j)) *a(n-j), j=1..n)/n)
end:
seq(a(n), n=0..30); # Alois P. Heinz, Nov 03 2012
-
b[n_] := Sum[EulerPhi[d]*25^(n/d), {d, Divisors[n]}]/n-1; a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d*b[d], {d, Divisors[j]}]*a[n-j], {j, 1, n}]/n]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Feb 17 2014, after Alois P. Heinz *)
-
N=66; x='x+O('x^N);
gf=prod(n=1,N, (1-x^n)/(1-25*x^n) );
v=Vec(gf)
/* Joerg Arndt, Jan 24 2013 */
A221578
A sum over partitions (q=6), see first comment.
Original entry on oeis.org
1, 5, 35, 210, 1290, 7735, 46620, 279685, 1679370, 10076190, 60464670, 362787810, 2176773305, 13060638360, 78364108620, 470184650495, 2821109573550, 16926657432510, 101559954663930, 609359727929610, 3656158427989830, 21936950567886270, 131621703769781995
Offset: 0
-
with(numtheory):
b:= proc(n) b(n):= add(phi(d)*6^(n/d), d=divisors(n))/n-1 end:
a:= proc(n) a(n):= `if`(n=0, 1,
add(add(d*b(d), d=divisors(j)) *a(n-j), j=1..n)/n)
end:
seq(a(n), n=0..30); # Alois P. Heinz, Jan 24 2013
-
b[n_] := Sum[EulerPhi[d]*6^(n/d), {d, Divisors[n]}]/n-1; a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d*b[d], {d, Divisors[j]}]*a[n-j], {j, 1, n}]/n]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Feb 17 2014, after Alois P. Heinz *)
-
N=66; x='x+O('x^N);
gf=prod(n=1,N, (1-x^n)/(1-6*x^n) );
v=Vec(gf)
A221579
A sum over partitions (q=10), see first comment.
Original entry on oeis.org
1, 9, 99, 990, 9990, 99891, 999900, 9998901, 99998910, 999989010, 9999989010, 99999889110, 999999890109, 9999998890200, 99999998891100, 999999988901199, 9999999988902090, 99999999888912090, 999999999889011990, 9999999998889021990
Offset: 0
-
with(numtheory):
b:= proc(n) b(n):= add(phi(d)*10^(n/d), d=divisors(n))/n-1 end:
a:= proc(n) a(n):= `if`(n=0, 1,
add(add(d*b(d), d=divisors(j)) *a(n-j), j=1..n)/n)
end:
seq(a(n), n=0..30); # Alois P. Heinz, Jan 25 2013
-
b[n_] := Sum[EulerPhi[d]*10^(n/d), {d, Divisors[n]}]/n-1; a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d*b[d], {d, Divisors[j]}]*a[n-j], {j, 1, n}]/n]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Feb 17 2014, after Alois P. Heinz *)
-
N=66; x='x+O('x^N);
gf=prod(n=1,N, (1-x^n)/(1-10*x^n) );
v=Vec(gf)
A221580
A sum over partitions (q=12), see first comment.
Original entry on oeis.org
1, 11, 143, 1716, 20724, 248677, 2985840, 35829937, 429979836, 5159757900, 61917341772, 743008099548, 8916100178843, 106993202123808, 1283918461295184, 15407021535521759, 184884258855973380, 2218611106271412996, 26623333280416468596, 319479999364994391924
Offset: 0
-
with(numtheory):
b:= proc(n) b(n):= add(phi(d)*12^(n/d), d=divisors(n))/n-1 end:
a:= proc(n) a(n):= `if`(n=0, 1,
add(add(d*b(d), d=divisors(j)) *a(n-j), j=1..n)/n)
end:
seq(a(n), n=0..30); # Alois P. Heinz, Feb 03 2013
-
b[n_] := Sum[EulerPhi[d]*12^(n/d), {d, Divisors[n]}]/n-1; a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d*b[d], {d, Divisors[j]}]*a[n-j], {j, 1, n}]/n]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Feb 17 2014, after Alois P. Heinz *)
-
N=66; x='x+O('x^N);
gf=prod(n=1,N, (1-x^n)/(1-12*x^n) );
v=Vec(gf)
A221581
A sum over partitions (q=14), see first comment.
Original entry on oeis.org
1, 13, 195, 2730, 38402, 537615, 7529340, 105410565, 1475786130, 20661005638, 289254613830, 4049564590890, 56693911799265, 793714765148760, 11112006817455180, 155568095444334495, 2177953337695895942, 30491346727741970070, 426878854209048054450
Offset: 0
-
with(numtheory):
b:= proc(n) b(n):= add(phi(d)*14^(n/d), d=divisors(n))/n-1 end:
a:= proc(n) a(n):= `if`(n=0, 1,
add(add(d*b(d), d=divisors(j)) *a(n-j), j=1..n)/n)
end:
seq(a(n), n=0..30); # Alois P. Heinz, Feb 03 2013
-
b[n_] := Sum[EulerPhi[d]*14^(n/d), {d, Divisors[n]}]/n-1; a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d*b[d], {d, Divisors[j]}]*a[n-j], {j, 1, n}]/n]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Feb 17 2014, after Alois P. Heinz *)
-
N=66; x='x+O('x^N);
gf=prod(n=1,N, (1-x^n)/(1-14*x^n) );
v=Vec(gf)
A221582
A sum over partitions (q=15), see first comment.
Original entry on oeis.org
1, 14, 224, 3360, 50610, 759136, 11390400, 170855776, 2562887040, 38443305390, 576650336640, 8649755046240, 129746337080864, 1946195056159200, 29192926013193600, 437893890197853824, 6568408355529888210, 98526125332947516960, 1477891880032655307360
Offset: 0
-
with(numtheory):
b:= proc(n) b(n):= add(phi(d)*15^(n/d), d=divisors(n))/n-1 end:
a:= proc(n) a(n):= `if`(n=0, 1,
add(add(d*b(d), d=divisors(j)) *a(n-j), j=1..n)/n)
end:
seq(a(n), n=0..30); # Alois P. Heinz, Feb 03 2013
-
b[n_] := Sum[EulerPhi[d]*15^(n/d), {d, Divisors[n]}]/n-1; a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d*b[d], {d, Divisors[j]}]*a[n-j], {j, 1, n}]/n]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Feb 17 2014, after Alois P. Heinz *)
-
N=66; x='x+O('x^N);
gf=prod(n=1,N, (1-x^n)/(1-15*x^n) );
v=Vec(gf)
A221583
A sum over partitions (q=18), see first comment.
Original entry on oeis.org
1, 17, 323, 5814, 104958, 1889227, 34011900, 612213877, 11019954438, 198359179578, 3570467115834, 64268408079198, 1156831379431973, 20822964829665048, 374813367546080412, 6746640615829343087, 121439531095946141922, 2185911559727028566514
Offset: 0
-
with(numtheory):
b:= proc(n) b(n):= add(phi(d)*18^(n/d), d=divisors(n))/n-1 end:
a:= proc(n) a(n):= `if`(n=0, 1,
add(add(d*b(d), d=divisors(j)) *a(n-j), j=1..n)/n)
end:
seq(a(n), n=0..30); # Alois P. Heinz, Feb 03 2013
-
b[n_] := Sum[EulerPhi[d]*18^(n/d), {d, Divisors[n]}]/n-1; a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d*b[d], {d, Divisors[j]}]*a[n-j], {j, 1, n}]/n]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Feb 17 2014, after Alois P. Heinz *)
-
N=66; x='x+O('x^N);
gf=prod(n=1,N, (1-x^n)/(1-18*x^n) );
v=Vec(gf)
Comments