cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-34 of 34 results.

A250176 Numbers n such that Phi_20(n) is prime, where Phi is the cyclotomic polynomial.

Original entry on oeis.org

4, 9, 11, 16, 19, 26, 34, 45, 54, 70, 86, 91, 96, 101, 105, 109, 110, 119, 120, 126, 129, 139, 141, 149, 171, 181, 190, 195, 215, 229, 260, 276, 299, 305, 309, 311, 314, 319, 334, 339, 369, 375, 414, 420, 425, 444, 470, 479, 485, 506, 519, 534, 540, 550
Offset: 1

Views

Author

Eric Chen, Dec 24 2014

Keywords

Crossrefs

Cf. A008864 (1), A006093 (2), A002384 (3), A005574 (4), A049409 (5), A055494(6), A100330 (7), A000068 (8), A153439 (9), A246392 (10), A162862(11), A246397 (12), A217070 (13), A006314 (16), A217071 (17), A164989(18), A217072 (19), A217073 (23), A153440 (27), A217074 (29), A217075(31), A006313 (32), A097475 (36), A217076 (37), A217077 (41), A217078(43), A217079 (47), A217080 (53), A217081 (59), A217082 (61), A006315(64), A217083 (67), A217084 (71), A217085 (73), A217086 (79), A153441(81), A217087 (83), A217088 (89), A217089 (97), A006316 (128), A153442(243), A056994 (256), A056995 (512), A057465 (1024), A057002 (2048), A088361 (4096), A088362 (8192), A226528 (16384), A226529 (32768), A226530(65536).

Programs

  • Mathematica
    Select[Range[600], PrimeQ[Cyclotomic[20, #]] &] (* Vincenzo Librandi, Jan 16 2015 *)
  • PARI
    isok(n) = isprime(polcyclo(20, n)); \\ Michel Marcus, Sep 29 2015

Extensions

More terms from Vincenzo Librandi, Jan 16 2015

A253240 Square array read by antidiagonals: T(m, n) = Phi_m(n), the m-th cyclotomic polynomial at x=n.

Original entry on oeis.org

1, 1, -1, 1, 0, 1, 1, 1, 2, 1, 1, 2, 3, 3, 1, 1, 3, 4, 7, 2, 1, 1, 4, 5, 13, 5, 5, 1, 1, 5, 6, 21, 10, 31, 1, 1, 1, 6, 7, 31, 17, 121, 3, 7, 1, 1, 7, 8, 43, 26, 341, 7, 127, 2, 1, 1, 8, 9, 57, 37, 781, 13, 1093, 17, 3, 1, 1, 9, 10, 73, 50, 1555, 21, 5461, 82, 73, 1, 1, 1, 10, 11, 91, 65, 2801, 31, 19531, 257, 757, 11, 11, 1, 1, 11, 12, 111, 82, 4681, 43, 55987, 626, 4161, 61, 2047, 1, 1
Offset: 0

Views

Author

Eric Chen, Apr 22 2015

Keywords

Comments

Outside of rows 0, 1, 2 and columns 0, 1, only terms of A206942 occur.
Conjecture: There are infinitely many primes in every row (except row 0) and every column (except column 0), the indices of the first prime in n-th row and n-th column are listed in A117544 and A117545. (See A206864 for all the primes apart from row 0, 1, 2 and column 0, 1.)
Another conjecture: Except row 0, 1, 2 and column 0, 1, the only perfect powers in this table are 121 (=Phi_5(3)) and 343 (=Phi_3(18)=Phi_6(19)).

Examples

			Read by antidiagonals:
m\n  0   1   2   3   4   5   6   7   8   9  10  11  12
------------------------------------------------------
0    1   1   1   1   1   1   1   1   1   1   1   1   1
1   -1   0   1   2   3   4   5   6   7   8   9  10  11
2    1   2   3   4   5   6   7   8   9  10  11  12  13
3    1   3   7  13  21  31  43  57  73  91 111 133 157
4    1   2   5  10  17  26  37  50  65  82 101 122 145
5    1   5  31 121 341 781 ... ... ... ... ... ... ...
6    1   1   3   7  13  21  31  43  57  73  91 111 133
etc.
The cyclotomic polynomials are:
n        n-th cyclotomic polynomial
0        1
1        x-1
2        x+1
3        x^2+x+1
4        x^2+1
5        x^4+x^3+x^2+x+1
6        x^2-x+1
...
		

Crossrefs

Main diagonal is A070518.
Indices of primes in n-th column for n = 1-10 are A246655, A072226, A138933, A138934, A138935, A138936, A138937, A138938, A138939, A138940.
Indices of primes in main diagonal is A070519.
Cf. A117544 (indices of first prime in n-th row), A085398 (indices of first prime in n-th row apart from column 1), A117545 (indices of first prime in n-th column).
Cf. A206942 (all terms (sorted) for rows>2 and columns>1).
Cf. A206864 (all primes (sorted) for rows>2 and columns>1).

Programs

  • Mathematica
    Table[Cyclotomic[m, k-m], {k, 0, 49}, {m, 0, k}]
  • PARI
    t1(n)=n-binomial(floor(1/2+sqrt(2+2*n)), 2)
    t2(n)=binomial(floor(3/2+sqrt(2+2*n)), 2)-(n+1)
    T(m, n) = if(m==0, 1, polcyclo(m, n))
    a(n) = T(t1(n), t2(n))

Formula

T(m, n) = Phi_m(n)

A286094 Nonprime numbers n such that n^4 + n^3 + n^2 + n + 1 is prime.

Original entry on oeis.org

1, 12, 22, 24, 28, 30, 40, 44, 50, 62, 63, 68, 74, 77, 85, 94, 99, 110, 117, 118, 120, 122, 129, 134, 143, 145, 154, 162, 164, 165, 172, 175
Offset: 1

Views

Author

Bernard Schott, May 02 2017

Keywords

Comments

A065509 Union {this sequence} = A049409.
The corresponding prime numbers n^4 + n^3 + n^2 + n + 1 = 11111_n are in A193366; these Brazilian primes, except 5 which is not Brazilian, belong to A085104 and A285017.

Examples

			12 is in the sequence because 12^4 + 12^3 + 12^2 + 12 + 1 = 11111_12 = 22621, which is prime.
		

Crossrefs

Programs

  • Mathematica
    Select[Range@ 414, And[! PrimeQ@ #, PrimeQ[Total[#^Range[0, 4]]]] &] (* Michael De Vlieger, May 03 2017 *)
  • PARI
    isok(n)=if(n==1,5,if(ispseudoprime(n), 0, isprime(fromdigits([1, 1, 1, 1, 1], n))));
    getfirstterms(n)={my(L:list, c:small); L=List(); c=0; forstep(k=1, +oo, 1, if(isok(k), listput(L, k); if(c++==n, break))); return(Vec(L))} \\ R. J. Cano, May 09 2017

A182424 Numbers n such that n^4 + n^3 + n^2 + n - 1 is prime.

Original entry on oeis.org

1, 2, 6, 8, 11, 12, 18, 30, 32, 39, 41, 44, 50, 63, 65, 69, 72, 74, 75, 78, 86, 93, 104, 107, 110, 123, 126, 140, 149, 153, 158, 165, 177, 179, 182, 186, 188, 189, 215, 218, 222, 225, 236, 237, 239, 254, 264, 267, 272, 278, 296, 299, 302, 305, 314, 320, 327, 330
Offset: 1

Views

Author

Alex Ratushnyak, Apr 28 2012

Keywords

Comments

The sequence contains 60491 terms <= 10^6.
The corresponding sequence of primes begins 3, 29, 1553, 4679, 16103, 22619, 111149, 837929, 1082399, 2374319, 2896403, 3835259, 6377549, 16007039, ...

Examples

			18^4 + 18^3 + 18^2 + 18 - 1 = 111149 is prime, so 18 is in the sequence.
		

Crossrefs

Programs

  • Magma
    [n: n in [0..400] | IsPrime(s) where s is -1+&+[n^i: i in [1..4 by 1]]]; // Vincenzo Librandi, Aug 10 2014
  • Mathematica
    Select[Range[350],PrimeQ[Total[#^Range[4]]-1]&] (* Harvey P. Dale, Aug 09 2014 *)
  • PARI
    for (n=1,10^4, p=n^4 + n^3 + n^2 + n - 1; if (isprime(p), print1(n,", ")));
    /* Joerg Arndt, Apr 28 2012 */
    
Previous Showing 31-34 of 34 results.