cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 178 results. Next

A262679 a(n) = largest k in A259934 which is an ancestor of n in a tree generated by edge-relation A049820(child) = parent. If n is itself in A259934, then a(n) = n.

Original entry on oeis.org

0, 0, 2, 0, 0, 0, 6, 0, 0, 6, 6, 6, 12, 6, 6, 6, 6, 6, 18, 6, 6, 6, 22, 6, 6, 22, 22, 6, 22, 6, 30, 6, 22, 6, 34, 6, 6, 6, 34, 6, 22, 6, 42, 6, 34, 6, 46, 6, 34, 46, 34, 6, 46, 6, 54, 6, 34, 6, 58, 6, 34, 6, 62, 6, 6, 6, 58, 6, 62, 6, 70, 6, 34, 6, 70, 6, 70, 6, 78, 6, 70, 70, 78, 70, 34, 70, 78, 70, 70, 70, 90, 70, 78, 70, 94, 70, 34, 70, 78, 70, 70, 70, 102, 70, 34, 70, 106, 70, 34, 70, 102, 70, 102, 70, 114, 70, 102, 70, 118, 70, 34, 121, 118, 70
Offset: 0

Views

Author

Antti Karttunen, Oct 04 2015

Keywords

Comments

For the terms outside of A259934 the condition "largest k in A259934 which is an ancestor of n" is equivalent to the condition "nearest ancestor in A259934".

Crossrefs

Formula

If A262693(n) = 1 [i.e., when n is in A259934], then a(n) = n, otherwise a(n) = a(A049820(n)).

A262892 Indices of nonbranching nodes in the infinite trunk (A259934) of the tree generated by edge-relation A049820(child) = parent.

Original entry on oeis.org

1, 3, 4, 6, 8, 10, 15, 16, 18, 21, 30, 31, 32, 36, 37, 39, 44, 45, 49, 50, 51, 53, 54, 55, 58, 60, 62, 65, 68, 71, 72, 73, 74, 75, 76, 80, 83, 84, 90, 91, 93, 96, 109, 112, 117, 122, 123, 124, 126, 127, 131, 134, 135, 137, 141, 142, 144, 145, 147, 149, 152, 154, 155, 161, 162, 165, 166, 170, 178, 187, 189, 190, 191, 193, 195, 199, 201, 203, 205, 211, 212, 213, 219, 223, 225
Offset: 1

Views

Author

Antti Karttunen, Oct 04 2015

Keywords

Comments

Positions of zeros in A262890. Positions of ones in A262891.
Sequence b(n) = A262508(n)-1 = 9235, 9236, 9237, 9246, 9247, 9329, 9330, 9352, 9355, ..., is a subsequence.

Crossrefs

Cf. A262897 (nonbranching nodes themselves).
Cf. A262508.

Formula

Other identities. For all n >= 1:
A262897(n) = A259934(a(n)) = A262896(a(n)).

A322996 Number of iterations of A049820(x) = x - A000005(x) needed to reach an odd number or zero, when starting from x = n.

Original entry on oeis.org

0, 0, 1, 0, 1, 0, 2, 0, 2, 0, 3, 0, 3, 0, 4, 0, 1, 0, 4, 0, 5, 0, 5, 0, 2, 0, 6, 0, 6, 0, 6, 0, 7, 0, 7, 0, 1, 0, 8, 0, 8, 0, 8, 0, 9, 0, 9, 0, 9, 0, 10, 0, 10, 0, 10, 0, 10, 0, 11, 0, 10, 0, 12, 0, 1, 0, 12, 0, 13, 0, 13, 0, 11, 0, 14, 0, 14, 0, 14, 0, 14, 0, 15, 0, 12, 0, 16, 0, 15, 0, 15, 0, 17, 0, 16, 0, 13, 0, 18, 0, 1, 0, 17, 0, 14, 0
Offset: 0

Views

Author

Antti Karttunen, Jan 05 2019

Keywords

Crossrefs

Cf. also A322983.

Programs

Formula

a(0) = 0; for n >= 1, for n odd, a(n) = 0, and for n even, a(n) = 1 + a(n-A000005(n)).
a(n) <= A155043(n).
For n >= 83, a(2*n) = 1+A322987(2*n).

A323073 Number of iterations of A049820(x) = x - A000005(x) needed to reach either zero or such x that x and A049820(x) are coprime, when starting from x = n.

Original entry on oeis.org

0, 0, 1, 0, 0, 0, 2, 0, 1, 3, 3, 0, 3, 0, 4, 0, 0, 0, 4, 0, 5, 0, 5, 0, 1, 0, 6, 0, 6, 0, 6, 0, 7, 0, 7, 0, 1, 0, 8, 0, 8, 0, 8, 0, 9, 1, 9, 0, 9, 0, 10, 0, 10, 0, 10, 0, 10, 0, 11, 0, 10, 0, 12, 1, 0, 0, 12, 0, 13, 0, 13, 0, 11, 0, 14, 1, 14, 0, 14, 0, 14, 0, 15, 0, 12, 0, 16, 0, 15, 0, 15, 0, 17, 0, 16, 0, 13, 0
Offset: 0

Views

Author

Antti Karttunen, Jan 05 2019

Keywords

Crossrefs

Cf. A046642 (positions of zeros after the initial a(0)=0).

Programs

  • PARI
    A323073(n) = if(!n,0,my(nn=(n-numdiv(n))); if(1==gcd(n,nn),0,1+A323073(nn)));
    
  • PARI
    A323073(n) = if(!n,0,for(j=0,oo,my(nn=(n-numdiv(n))); if((0==nn)||(1==gcd(n,nn)),return(j+(2==n)),n = nn)));

Formula

a(0) = 0; for n > 0, if A009191(n) == 1, a(n) = 0, otherwise a(n) = 1 + a(n-A000005(n)).
a(n) <= A155043(n).

A325022 Harmonic numbers m from A001599 such that m*(m-tau(m))/sigma(m) is not an integer, where k-tau(k) = the number of nondivisors of k (A049820), tau(k) = the number of divisors of k (A000005) and sigma(k) = the sum of the divisors of k (A000203).

Original entry on oeis.org

140, 270, 1638, 2970, 6200, 8190, 18600, 18620, 27846, 55860, 105664, 117800, 167400, 173600, 237510, 242060, 360360, 539400, 726180, 753480, 950976, 1089270, 1421280, 1539720, 2229500, 2290260, 2457000, 2845800, 4358600, 4713984, 4754880, 5772200, 6051500
Offset: 1

Views

Author

Jaroslav Krizek, Mar 28 2019

Keywords

Comments

Numbers m such that sigma(m) divides m*tau(m) but sigma(m) does not divide m*(m-tau(m)).
Complement of A325021 with respect to A001599.

Examples

			140 is a term because 140*(140-tau(140))/sigma(140) = 140*(140-12)/336 = 160/3.
		

Crossrefs

Programs

  • Magma
    [n: n in [1..1000000] | IsIntegral((NumberOfDivisors(n) * n) / SumOfDivisors(n)) and not IsIntegral(((n-NumberOfDivisors(n)) * n) / SumOfDivisors(n))]
    
  • Mathematica
    Select[Range[10^5], And[IntegerQ@ HarmonicMean@ #4, ! IntegerQ[#1 (#1 - #2)/#3]] & @@ Append[{#}~Join~DivisorSigma[{0, 1}, #], Divisors@ #] &] (* Michael De Vlieger, Mar 30 2019 *)
  • PARI
    isok(m) = my(d=numdiv(m), s=sigma(m)); !frac(m*d/s) && frac(m*(m-d)/s); \\ Michel Marcus, Mar 28 2019
    
  • Python
    from itertools import count, islice
    from math import prod
    from functools import reduce
    from sympy import factorint
    def A325022_gen(startvalue=1): # generator of terms >= startvalue
        for n in count(max(startvalue,1)):
            f = factorint(n)
            s = prod((p**(e+1)-1)//(p-1) for p, e in f.items())
            if n*n%s and not reduce(lambda x,y:x*y%s,(e+1 for e in f.values()),1)*n%s:
                yield n
    A325022_list = list(islice(A325022_gen(),10)) # Chai Wah Wu, Feb 14 2023

A325024 Multiply-perfect numbers m from A007691 such that m*(m-tau(m))/sigma(m) is not an integer where k-tau(k) is the number of the non-divisors of k (A049820) and sigma(k) is the sum of the divisors of k (A000203).

Original entry on oeis.org

120, 523776, 459818240, 1476304896, 31998395520, 51001180160, 518666803200, 30823866178560, 740344994887680, 796928461056000, 212517062615531520, 69357059049509038080, 87934476737668055040, 170206605192656148480, 1161492388333469337600, 1802582780370364661760
Offset: 1

Views

Author

Jaroslav Krizek, May 12 2019

Keywords

Comments

Numbers m such that m divides sigma(m) but sigma(m) does not divide m*(m-tau(m)).
Complement of A325023 with respect to A007691.

Examples

			120 is a term because 120*(120-tau(120))/sigma(120) = 120*(120-16)/360 = 104/3.
		

Crossrefs

Programs

  • Magma
    [n: n in [1..1000000] | not IsIntegral(((n-NumberOfDivisors(n)) * n) / SumOfDivisors(n)) and IsIntegral(SumOfDivisors(n)/n)]
    
  • Mathematica
    Select[Range[10^6], And[Mod[#3, #1] == 0, !IntegerQ[#1 (#1 - #2)/#3]] & @@ Prepend[DivisorSigma[{0, 1}, #], #] &] (* Amiram Eldar, Jul 10 2019 after Michael De Vlieger at A325023 *)
  • PARI
    isA325024(m) = { my(s=sigma(m)); ((1==denominator(s/m)) && (1!=denominator(m*(m-numdiv(m))/s))); }; \\ Antti Karttunen, May 25 2019

A236561 Values taken by the A049820, sorted into ascending order.

Original entry on oeis.org

0, 0, 1, 1, 2, 3, 4, 5, 6, 6, 6, 9, 10, 11, 11, 11, 12, 14, 15, 16, 17, 17, 18, 21, 22, 22, 22, 22, 23, 26, 27, 27, 29, 29, 30, 31, 32, 34, 34, 35, 35, 38, 38, 39, 39, 41, 42, 44, 45, 46, 46, 46, 47, 48, 48, 51, 51, 53, 54, 57, 57, 57, 58, 58, 59, 60, 61, 62
Offset: 1

Views

Author

Jaroslav Krizek, Feb 09 2014

Keywords

Crossrefs

A262888 a(n) = total number of nodes in the finite subtrees branching "left" (to the "smaller side") from node n in the infinite trunk (A259934) of the tree generated by edge-relation A049820(child) = parent.

Original entry on oeis.org

6, 0, 41, 0, 0, 5, 0, 16, 0, 2, 0, 0, 1, 24, 4, 0, 0, 0, 0, 0, 0, 0, 105, 2, 0, 0, 0, 3, 18, 7, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 13, 1, 0, 0, 0, 0, 6, 1, 0, 0, 0, 47, 0, 0, 0, 90, 0, 0, 5, 0, 0, 0, 1, 0, 0, 12, 0, 0, 3, 61, 0, 0, 0, 0, 0, 0, 1, 117, 7, 0, 2, 10, 0, 0, 1, 23, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 2, 2, 2, 568, 0, 1, 1, 4, 0, 5, 9, 0, 0, 0, 0, 0, 8, 0, 1, 1, 0, 2, 10, 1, 1, 0
Offset: 0

Views

Author

Antti Karttunen, Oct 04 2015

Keywords

Crossrefs

Programs

  • Scheme
    (define (A262888 n) (let ((t (A259934 n))) (let loop ((s 0) (k (A259934 (+ 1 n)))) (cond ((<= k t) s) ((= t (A049820 k)) (loop (+ s (A262697 k)) (- k 1))) (else (loop s (- k 1)))))))

Formula

a(n) = sum_{k = A082284(A259934(n)) .. A259934(n+1)} [A049820(k) = A259934(n)] * A262697(k).
(Here [ ] stands for Iverson bracket, giving as its result 1 only when A049820(k) = A259934(n), and 0 otherwise).
Other identities. For all n >= 0:
A262890(n) = a(n) + A262889(n).

A262889 a(n) = total number of nodes in the finite subtrees branching "right" (to the "larger side") from node n in the infinite trunk (A259934) of the tree generated by edge-relation A049820(child) = parent.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 2, 0, 0, 0, 3, 0, 1, 13, 0, 0, 0, 1, 1, 2, 2, 0, 0, 0, 0, 0, 0, 2, 3, 0, 0, 5, 0, 4, 0, 1, 7, 0, 0, 7, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 5, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 3, 0, 22, 1, 0, 1, 2, 0, 6, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Antti Karttunen, Oct 04 2015

Keywords

Crossrefs

Programs

Formula

a(n) = sum_{k = A259934(n+1) .. A262686(A259934(n))} [A049820(k) = A259934(n)] * A262697(k).
(Here [ ] stands for Iverson bracket, giving as its result 1 only when A049820(k) = A259934(n), and 0 otherwise).
Other identities. For all n >= 0:
A262890(n) = A262888(n) + a(n).

A262897 Nonbranching nodes in the infinite trunk (A259934) of the tree generated by edge-relation A049820(child) = parent: a(n) = A259934(A262892(n)).

Original entry on oeis.org

2, 12, 18, 30, 42, 54, 90, 94, 106, 121, 190, 194, 210, 236, 242, 254, 298, 302, 342, 346, 354, 366, 374, 390, 410, 426, 442, 466, 494, 530, 546, 558, 562, 566, 574, 606, 650, 658, 710, 716, 730, 746, 914, 942, 986, 1030, 1038, 1042, 1052, 1058, 1090, 1114, 1134, 1146, 1240, 1250, 1266, 1278, 1286, 1310, 1354, 1370, 1378, 1418, 1426, 1450, 1454, 1490, 1562, 1650, 1662, 1670, 1676, 1694, 1706
Offset: 1

Views

Author

Antti Karttunen, Oct 06 2015

Keywords

Comments

Equally, numbers n for which A060990(n)*A262693(n) = 1, thus an intersection of A262511 and A259934.
The next odd term after a(10) = 121 occurs at a(3372) = 113569.

Crossrefs

Formula

a(n) = A259934(A262892(n)).
Previous Showing 21-30 of 178 results. Next