cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 254 results. Next

A334872 Number of steps needed to reach either 1 or one of the "Fermi-Dirac primes" (A050376) when starting from n and iterating with A334870.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 2, 0, 1, 2, 0, 0, 1, 0, 4, 2, 1, 0, 3, 0, 1, 2, 8, 0, 3, 0, 1, 2, 1, 4, 2, 0, 1, 2, 5, 0, 3, 0, 16, 4, 1, 0, 2, 0, 1, 2, 32, 0, 3, 4, 9, 2, 1, 0, 6, 0, 1, 8, 2, 4, 3, 0, 64, 2, 5, 0, 3, 0, 1, 2, 128, 8, 3, 0, 4, 0, 1, 0, 10, 4, 1, 2, 17, 0, 5, 8, 256, 2, 1, 4, 3, 0, 1, 16, 2, 0, 3, 0, 33, 6
Offset: 1

Views

Author

Antti Karttunen, Jun 08 2020

Keywords

Crossrefs

Cf. A050376 (positions of zeros after 1), A302777, A334859, A334865, A334870, A334871.

Programs

  • PARI
    A209229(n) = (n && !bitand(n,n-1));
    A302777(n) = A209229(isprimepower(n));
    A334870(n) = if(issquare(n),sqrtint(n),my(c=core(n), m=n); forprime(p=2, , if(!(c % p), m/=p; break, m*=p)); (m));
    A334872(n) = { my(s=0); while(n>1 && !A302777(n), s++; n = A334870(n)); (s); };
    
  • PARI
    \\ Much faster, A302777 like in above:
    A048675(n) = { my(f = factor(n)); sum(k=1, #f~, f[k, 2]*2^primepi(f[k, 1]))/2; };
    A052126(n) = if(1==n,n,(n/vecmax(factor(n)[, 1])));
    A334872(n) = { my(s=0); while(n>1 && !A302777(n), if(issquarefree(n), return(s+A048675(A052126(n)))); if(issquare(n), s++; n = sqrtint(n), s += A048675(core(n)); n /= core(n))); (s); };

Formula

If n = 1 or A302777(n) = 1, a(n) = 0, otherwise a(n) = 1 + a(A334870(n)).
For all n >= 1, a(n) <= A334871(n).

A304536 Binary weight of terms of A304533; Number of terms of A050376 in "Fermi-Dirac factorization" of A304531(1+n).

Original entry on oeis.org

0, 1, 2, 1, 2, 1, 2, 1, 2, 3, 1, 2, 3, 2, 3, 2, 3, 2, 4, 2, 3, 4, 3, 5, 2, 3, 4, 3, 4, 3, 4, 1, 2, 3, 2, 3, 2, 3, 2, 3, 4, 1, 2, 3, 2, 3, 2, 3, 2, 3, 4, 2, 3, 4, 3, 4, 3, 4, 3, 5, 3, 4, 5, 4, 6, 3, 4, 5, 4, 5, 4, 5, 2, 3, 4, 3, 4, 3, 4, 3, 5, 3, 4, 3, 4, 5, 4, 6, 4, 5, 3, 4, 5, 4, 5, 1, 2, 3, 2, 3, 2, 3, 2, 3, 4, 2
Offset: 0

Views

Author

Antti Karttunen, May 14 2018

Keywords

Crossrefs

Programs

Formula

a(n) = A000120(A304533(n)).
a(n) = A064547(A304531(1+n)).

A305830 Combined weight of the n-th FDH set-system. Factor n into distinct Fermi-Dirac primes (A050376), normalize by replacing every instance of the k-th Fermi-Dirac prime with k, then add up their FD-weights (A064547).

Original entry on oeis.org

0, 0, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 2, 1, 2, 2, 1, 2, 3, 2, 2, 2, 2, 1, 2, 2, 2, 3, 1, 1, 3, 2, 1, 2, 2, 2, 3, 2, 1, 2, 2, 1, 3, 3, 2, 3, 2, 2, 2, 2, 2, 3, 1, 2, 3, 2, 3, 2, 3, 3, 3, 2, 1, 3, 2, 1, 2, 2, 2, 3, 2, 2, 2, 1, 1, 3, 3, 2, 3
Offset: 1

Views

Author

Gus Wiseman, Jun 10 2018

Keywords

Comments

Let f(n) = A050376(n) be the n-th Fermi-Dirac prime. Every positive integer n has a unique factorization of the form n = f(s_1)*...*f(s_k) where the s_i are strictly increasing positive integers. Then a(n) = w(s_1) + ... + w(s_k) where w = A064547.

Examples

			Sequence of FDH set-systems (a list containing all finite sets of finite sets of positive integers) begins:
   1: {}
   2: {{}}
   3: {{1}}
   4: {{2}}
   5: {{3}}
   6: {{},{1}}
   7: {{4}}
   8: {{},{2}}
   9: {{1,2}}
  10: {{},{3}}
  11: {{5}}
  12: {{1},{2}}
  13: {{1,3}}
  14: {{},{4}}
  15: {{1},{3}}
  16: {{6}}
  17: {{1,4}}
  18: {{},{1,2}}
  19: {{7}}
  20: {{2},{3}}
  21: {{1},{4}}
  22: {{},{5}}
  23: {{2,3}}
  24: {{},{1},{2}}
  25: {{8}}
  26: {{},{1,3}}
  27: {{1},{1,2}}
		

Crossrefs

Programs

  • Mathematica
    nn=100;
    FDfactor[n_]:=If[n===1,{},Sort[Join@@Cases[FactorInteger[n],{p_,k_}:>Power[p,Cases[Position[IntegerDigits[k,2]//Reverse,1],{m_}->2^(m-1)]]]]];
    FDprimeList=Array[FDfactor,nn,1,Union];FDrules=MapIndexed[(#1->#2[[1]])&,FDprimeList];
    Table[Total[Length/@(FDfactor/@(FDfactor[n]/.FDrules))],{n,nn}]

A322822 Lexicographically earliest such sequence a that a(i) = a(j) => f(i) = f(j) for all i, j, where f(2) = -1, f(n) = 0 if n is a Fermi-Dirac prime (A050376) > 2, and f(n) = A300840(n) for all other numbers.

Original entry on oeis.org

1, 2, 3, 3, 3, 4, 3, 5, 3, 6, 3, 7, 3, 8, 9, 3, 3, 10, 3, 11, 12, 13, 3, 7, 3, 14, 15, 16, 3, 9, 3, 17, 18, 19, 20, 21, 3, 22, 23, 11, 3, 12, 3, 24, 25, 26, 3, 27, 3, 28, 29, 30, 3, 15, 31, 16, 32, 33, 3, 34, 3, 35, 36, 37, 38, 18, 3, 39, 40, 20, 3, 21, 3, 41, 42, 43, 44, 23, 3, 45, 3, 46, 3, 47, 48, 49, 50, 24, 3, 25, 51, 52, 53, 54, 55, 27, 3, 56, 57, 58, 3, 29, 3, 30
Offset: 1

Views

Author

Antti Karttunen, Dec 29 2018

Keywords

Comments

For all i, j: a(i) = a(j) => A322823(i) = A322823(j).

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    ispow2(n) = (n && !bitand(n,n-1));
    A302777(n) = ispow2(isprimepower(n));
    A050376list(up_to) = { my(v=vector(up_to), i=0); for(n=1,oo,if(A302777(n), i++; v[i] = n); if(i == up_to,return(v))); };
    v050376 = A050376list(up_to);
    A050376(n) = v050376[n];
    A052330(n) = { my(p=1,i=1); while(n>0, if(n%2, p *= A050376(i)); i++; n >>= 1); (p); };
    A052331(n) = { my(s=0,e); while(n > 1, fordiv(n, d, if(((n/d)>1)&&ispow2(isprimepower(n/d)), e = vecsearch(v050376, n/d); if(!e, print("v050376 too short!"); return(1/0)); s += 2^(e-1); n = d; break))); (s); };
    A300840(n) = A052330(A052331(n)>>1);
    A322822aux(n) = if((2==n),-1,if(A302777(n),0,A300840(n)));
    v322822 = rgs_transform(vector(up_to,n,A322822aux(n)));
    A322822(n) = v322822[n];

A366074 The number of "Fermi-Dirac primes" (A050376) that are unitary divisors of n.

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 1, 0, 1, 2, 1, 2, 1, 2, 2, 1, 1, 2, 1, 2, 2, 2, 1, 1, 1, 2, 0, 2, 1, 3, 1, 0, 2, 2, 2, 2, 1, 2, 2, 1, 1, 3, 1, 2, 2, 2, 1, 2, 1, 2, 2, 2, 1, 1, 2, 1, 2, 2, 1, 3, 1, 2, 2, 0, 2, 3, 1, 2, 2, 3, 1, 1, 1, 2, 2, 2, 2, 3, 1, 2, 1, 2, 1, 3, 2, 2, 2
Offset: 1

Views

Author

Amiram Eldar, Sep 28 2023

Keywords

Comments

First differs from A293439 at n = 128.

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[e == 2^IntegerExponent[e, 2], 1, 0]; a[1] = 0; a[n_] := Plus @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = vecsum(apply(x -> (x == 1 << valuation(x, 2)), factor(n)[, 2]));

Formula

Additive with a(p^e) = A209229(e).
Sum_{k=1..n} a(k) ~ n * (log(log(n)) + B + C), where B is Mertens's constant (A077761) and C = -P(2) + Sum_{k>=1} (P(2^k) - P(2^k+1)) = -0.13145993422430119364..., where P(s) is the prime zeta function.

A366246 The number of infinitary divisors of n that are "Fermi-Dirac primes" (A050376) and terms of A366242.

Original entry on oeis.org

0, 1, 1, 0, 1, 2, 1, 1, 0, 2, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 2, 2, 1, 2, 0, 2, 1, 1, 1, 3, 1, 2, 2, 2, 2, 0, 1, 2, 2, 2, 1, 3, 1, 1, 1, 2, 1, 2, 0, 1, 2, 1, 1, 2, 2, 2, 2, 2, 1, 2, 1, 2, 1, 1, 2, 3, 1, 1, 2, 3, 1, 1, 1, 2, 1, 1, 2, 3, 1, 2, 1, 2, 1, 2, 2, 2, 2
Offset: 1

Views

Author

Amiram Eldar, Oct 05 2023

Keywords

Crossrefs

Programs

  • Mathematica
    s[0] = 0; s[n_] := s[n] = s[Floor[n/4]] + If[OddQ[Mod[n, 4]], 1, 0]; f[p_, e_] := s[e]; a[1] = 0; a[n_] := Plus @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    s(e) = if(e>3, s(e\4)) + e%2 \\ after Charles R Greathouse IV at A139351
    a(n) = vecsum(apply(s, factor(n)[, 2]));

Formula

Additive with a(p^e) = A139351(e).
a(n) = A064547(n) - A366247(n).
a(n) = A064547(A366244(n)).
a(n) >= 0, with equality if and only if n is in A366243.
a(n) <= A064547(n), with equality if and only if n is in A366242.
Sum_{k=1..n} a(k) ~ n * (log(log(n)) + B + C), where B is Mertens's constant (A077761) and C = Sum_{p prime} f(1/p) = -0.25705126777012995187..., where f(x) = - x + Sum_{k>=0} (x^(4^k)/(1+x^(4^k))).

A050378 Number of factorizations into members of A050376 by prime signature. A050377(A025487).

Original entry on oeis.org

1, 1, 2, 1, 2, 2, 4, 2, 1, 4, 4, 4, 2, 6, 4, 4, 2, 6, 8, 4, 6, 1, 4, 4, 10, 8, 4, 6, 2, 8, 4, 10, 12, 8, 10, 2, 8, 8, 6, 14, 4, 12, 4, 16, 8, 10, 4, 12, 8, 6, 14, 8, 20, 1, 4, 16, 12, 14, 4, 12, 16, 10, 20, 8, 20, 2, 8, 24, 8, 12, 14, 8, 16, 6, 20, 16, 4, 10
Offset: 1

Views

Author

Christian G. Bower, Nov 15 1999

Keywords

Crossrefs

Extensions

More terms from Amiram Eldar, Jan 29 2019

A050380 Number of ordered factorizations into terms of A050376 by prime signature.

Original entry on oeis.org

1, 1, 2, 2, 3, 5, 6, 10, 6, 10, 14, 22, 18, 18, 32, 44, 44, 31, 76, 60, 89, 24, 84, 108, 56, 167, 164, 174, 84, 217, 246, 98, 364, 435, 342, 240, 522, 222, 550, 174, 500, 768, 324, 598, 1074, 660, 654, 1224, 674, 1188, 306, 1434, 1608, 120
Offset: 1

Views

Author

Christian G. Bower, Nov 15 1999

Keywords

Crossrefs

Formula

a(n) = A050379(A025487(n)).

A176699 Fermi-Dirac composite numbers that are not a sum of two Fermi-Dirac primes (A050376).

Original entry on oeis.org

145, 187, 205, 217, 219, 221, 247, 301, 325, 343, 415, 427, 475, 517, 535, 553, 555, 583, 637, 667, 671, 697, 715, 781, 783, 793, 795, 805, 807, 817, 835, 847, 851, 871, 895, 901, 905, 925, 959, 1003, 1005, 1027, 1045, 1057, 1059, 1075, 1081, 1135, 1141, 1147
Offset: 1

Views

Author

Vladimir Shevelev, Apr 24 2010, Apr 26 2010

Keywords

Comments

We define a Fermi-Dirac composite number as a positive integer with at least two factors in its factorization over distinct terms of A050376.
They are those c for which A064547(c) >= 2, namely c= 6, 8, 10, 12,..., 62, 63, 64, 65, ..., or the complement of A050376 with respect to the natural numbers > 1.

Examples

			291 = 3*97 is a Fermi-Dirac composite number, equal to 289+2, the sum of two Fermi-Dirac primes. Therefore 291 is not in the sequence.
		

References

  • Vladimir S. Shevelev, Multiplicative functions in the Fermi-Dirac arithmetic, Izvestia Vuzov of the North-Caucasus region, Nature Sciences 4 (1996), 28-43.

Crossrefs

Programs

  • Maple
    A064547 := proc(n) f := ifactors(n)[2] ; a := 0 ; for p in f do a := a+wt(op(2, p)) ; end do: a ; end proc:
    A050376 := proc(n) local a; if n = 1 then 2; else for a from procname(n-1)+1 do if A064547(a) = 1 then return a; end if; end do: end if; end proc:
    isA176699 := proc(n) local pi,q ; if A064547(n) < 2 then return false; end if; for pi from 1 do if A050376(pi) > n then return true; else q := n-A050376(pi) ; if A064547(q) = 1 then return false; end if; end if; end do; end proc:
    for n from 2 to 1000 do if isA176699(n) then printf("%d,\n",n) ; end if; end do: # R. J. Mathar, Jun 16 2010
  • Mathematica
    pow2Q[n_] := n == 2^IntegerExponent[n, 2]; fdpQ[n_] := PrimePowerQ[n] && pow2Q[FactorInteger[n][[1, 2]]]; With[{m = 1200}, p = Select[Range[m], fdpQ]; Complement[Range[m], Join[{1}, p, Plus @@@ Subsets[p, {2}]]]] (* Amiram Eldar, Oct 05 2023 *)

Extensions

Edited and extended by R. J. Mathar, Jun 16 2010
More terms from Amiram Eldar, Oct 05 2023

A181894 Sum of factors from A050376 in Fermi-Dirac representation of n.

Original entry on oeis.org

0, 2, 3, 4, 5, 5, 7, 6, 9, 7, 11, 7, 13, 9, 8, 16, 17, 11, 19, 9, 10, 13, 23, 9, 25, 15, 12, 11, 29, 10, 31, 18, 14, 19, 12, 13, 37, 21, 16, 11, 41, 12, 43, 15, 14, 25, 47, 19, 49, 27, 20, 17, 53, 14, 16, 13, 22, 31, 59, 12, 61, 33, 16, 20, 18, 16, 67, 21, 26
Offset: 1

Views

Author

Vladimir Shevelev, Mar 31 2012

Keywords

Comments

Fermi-Dirac analog of A008472. Also, since a(q) = q iff q is in A050376, then for n = Product_{q is in A050376} q, we have a(n) = Sum_{q is in A050376} a(q). Therefore, it is natural to call a(n) the Fermi-Dirac integer logarithm of n (Cf. A001414).

Examples

			For n = 54, the Fermi-Dirac representation is 54 = 2*3*9, then a(54) = 2+3+9 = 14.
		

Crossrefs

Programs

  • Haskell
    a181894 1 = 0
    a181894 n = sum $ a213925_row n  -- Reinhard Zumkeller, Mar 20 2013
    
  • Mathematica
    FermiDiracSum[n_] := Module[{e, ex, p, s}, If[n <= 1, 0, {p, e} = Transpose[FactorInteger[n]]; s = 0; Do[d = IntegerDigits[e[[i]], 2]; ex = DeleteCases[Reverse[2^Range[0, Length[d] - 1]] d, 0]; s = s + Total[p[[i]]^ex], {i, Length[e]}]; s]]; Table[FermiDiracSum[n], {n, 100}] (* T. D. Noe, Apr 05 2012 *)
  • PARI
    a(n) = if(n == 1, 0, my(f = factor(n), p = f[, 1], e = f[, 2], s = 0, b); for(i = 1, #p, b = binary(e[i]); for(j = 0, #b-1, if(b[#b-j], s += p[i]^(2^j)))); s); \\ Amiram Eldar, May 02 2025

Formula

a(n) = A008472(n) iff n is squarefree; if n is squarefree, then also a(n) = A001414(n), but here conversely, generally speaking, is not true. For example, a(24) = A001414(24). More generally, if n is duplicate or quadruplicate squarefree number, then also a(n) = A001414(n).
For n > 1: a(n) = Sum_{k=1..A064547(n)} A213925(n,k). - Reinhard Zumkeller, Mar 20 2013
Previous Showing 21-30 of 254 results. Next