cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 23 results. Next

A050625 Divisible by 3^k (where k is digit length of a(n)).

Original entry on oeis.org

3, 6, 9, 18, 27, 36, 45, 54, 63, 72, 81, 90, 99, 108, 135, 162, 189, 216, 243, 270, 297, 324, 351, 378, 405, 432, 459, 486, 513, 540, 567, 594, 621, 648, 675, 702, 729, 756, 783, 810, 837, 864, 891, 918, 945, 972, 999, 1053, 1134, 1215, 1296, 1377, 1458
Offset: 1

Views

Author

Patrick De Geest, Jun 15 1999

Keywords

Crossrefs

Programs

  • Mathematica
    Flatten[Table[3^n*Range[Ceiling[10^(n-1)/3^n],Floor[(10^n-1)/3^n]],{n,4}]] (* Harvey P. Dale, Feb 26 2015 *)
    Select[Range[1500],Mod[#,3^IntegerLength[#]]==0&] (* Harvey P. Dale, Apr 04 2020 *)

A053313 a(n) contains n digits (either '2' or '9') and is divisible by 2^n.

Original entry on oeis.org

2, 92, 992, 2992, 92992, 292992, 2292992, 22292992, 222292992, 2222292992, 22222292992, 922222292992, 9922222292992, 29922222292992, 929922222292992, 9929922222292992, 99929922222292992, 999929922222292992
Offset: 1

Views

Author

Henry Bottomley, Mar 06 2000

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Flatten[Table[FromDigits/@Tuples[{2,9},n],{n,18}]],Divisible[ #,2^IntegerLength[ #]]&] (* Harvey P. Dale, Feb 07 2015 *)

Formula

a(n)=a(n-1)+10^(n-1)*(2+7*[a(n-1)/2^(n-1) mod 2]) i.e. a(n) ends with a(n-1); if (n-1)-th term is divisible by 2^n then n-th term begins with a 2, if not then n-th term begins with a 7.

A053314 a(n) contains n digits (either '1' or '4') and is divisible by 2^n.

Original entry on oeis.org

4, 44, 144, 4144, 14144, 414144, 1414144, 41414144, 441414144, 1441414144, 11441414144, 411441414144, 4411441414144, 44411441414144, 444411441414144, 1444411441414144, 41444411441414144, 441444411441414144
Offset: 1

Views

Author

Henry Bottomley, Mar 06 2000

Keywords

Crossrefs

Programs

  • Maple
    A[1]:= 4:
    for n from 2 to 100 do
       if A[n-1] mod 2^n = 0 then A[n]:= A[n-1]+4*10^(n-1)
       else A[n]:= A[n-1]+10^(n-1)
    fi
    od:
    seq(A[i],i=1..100); # Robert Israel, Oct 27 2019
  • Mathematica
    nxt[{n_,a_}]:={n+1,If[Divisible[a,2^(n+1)],4*10^IntegerLength[a]+ a, 10^IntegerLength[ a]+a]}; NestList[nxt,{1,4},20][[All,2]] (* Harvey P. Dale, Oct 30 2022 *)

Formula

a(n) = a(n-1) + 10^(n-1)*(4 - 3*(a(n-1)/2^(n-1) mod 2)), i.e., a(n) ends with a(n-1); if (n-1)-th term is divisible by 2^n then n-th term begins with a 4, if not then n-th term begins with a 1.

Extensions

Formula corrected by Robert Israel, Oct 27 2019

A053315 a(n) contains n digits (either '4' or '5') and is divisible by 2^n.

Original entry on oeis.org

4, 44, 544, 4544, 44544, 444544, 4444544, 54444544, 454444544, 5454444544, 45454444544, 545454444544, 5545454444544, 55545454444544, 555545454444544, 4555545454444544, 44555545454444544, 544555545454444544
Offset: 1

Views

Author

Henry Bottomley, Mar 06 2000

Keywords

Crossrefs

Programs

  • Maple
    A[1]:= 4:
    for n from 2 to 100 do
       if A[n-1] mod 2^n = 0 then A[n]:= A[n-1]+4*10^(n-1)
       else A[n]:= A[n-1]+5*10^(n-1)
    fi
    od:
    seq(A[i],i=1..100); # Robert Israel, Oct 27 2019

Formula

a(n) = a(n-1) + 10^(n-1)*(4 + (a(n-1)/2^(n-1) mod 2)), i.e., a(n) ends with a(n-1); if (n-1)-th term is divisible by 2^n then n-th term begins with a 4, if not then n-th term begins with a 5.

Extensions

Formula corrected by Robert Israel, Oct 27 2019

A053333 a(n) contains n digits (either '4' or '9') and is divisible by 2^n.

Original entry on oeis.org

4, 44, 944, 4944, 94944, 994944, 4994944, 94994944, 494994944, 9494994944, 49494994944, 449494994944, 9449494994944, 99449494994944, 499449494994944, 9499449494994944, 49499449494994944, 949499449494994944
Offset: 1

Views

Author

Henry Bottomley, Mar 06 2000

Keywords

Crossrefs

Programs

  • Mathematica
    nxt[{n_,a_}]:=Module[{fd=If[Mod[a,2^(n+1)]==0,4,9]},{n+1,fd 10^IntegerLength[a]+a}]; NestList[ nxt,{1,4},20][[;;,2]] (* Harvey P. Dale, Jul 14 2023 *)

Formula

a(n)=a(n-1)+10^(n-1)*(4+5*[a(n-1)/2^(n-1) mod 2]) i.e. a(n) ends with a(n-1); if (n-1)-th term is divisible by 2^n then n-th term begins with a 4, if not then n-th term begins with a 9.

A053334 a(n) contains n digits (either '1' or '6') and is divisible by 2^n.

Original entry on oeis.org

6, 16, 616, 1616, 11616, 111616, 6111616, 16111616, 616111616, 1616111616, 61616111616, 661616111616, 1661616111616, 61661616111616, 661661616111616, 6661661616111616, 66661661616111616, 666661661616111616
Offset: 1

Views

Author

Henry Bottomley, Mar 06 2000

Keywords

Crossrefs

Programs

  • Mathematica
    nxt[{n_,a_}]:={n+1,a+10^n (6-5*Mod[a/2^n,2])}; NestList[nxt,{1,6},20][[;;,2]] (* Harvey P. Dale, Aug 20 2025 *)

Formula

a(n)=a(n-1)+10^(n-1)*(6-5*[a(n-1)/2^(n-1) mod 2]) i.e. a(n) ends with a(n-1); if (n-1)-th term is divisible by 2^n then n-th term begins with a 6, if not then n-th term begins with a 1.

A053335 a(n) contains n digits (either '3' or '6') and is divisible by 2^n.

Original entry on oeis.org

6, 36, 336, 6336, 66336, 366336, 6366336, 36366336, 636366336, 3636366336, 33636366336, 333636366336, 3333636366336, 33333636366336, 633333636366336, 3633333636366336, 33633333636366336, 333633333636366336
Offset: 1

Views

Author

Henry Bottomley, Mar 06 2000

Keywords

Crossrefs

Formula

a(n)=a(n-1)+10^(n-1)*(6-3*[a(n-1)/2^(n-1) mod 2]) i.e. a(n) ends with a(n-1); if (n-1)-th term is divisible by 2^n then n-th term begins with a 6, if not then n-th term begins with a 3.

A053336 a(n) contains n digits (either '5' or '6') and is divisible by 2^n.

Original entry on oeis.org

6, 56, 656, 6656, 66656, 566656, 6566656, 66566656, 666566656, 6666566656, 56666566656, 656666566656, 6656666566656, 66656666566656, 566656666566656, 6566656666566656, 56566656666566656, 556566656666566656
Offset: 1

Views

Author

Henry Bottomley, Mar 06 2000

Keywords

Crossrefs

Programs

  • Mathematica
    Block[{a = {6}, k, m, w}, Do[k = 1; If[Mod[a[[-1]], 2^i] == 0, Set[w, Prepend[ConstantArray[5, i - 1], 6]], Set[w, ConstantArray[5, i]]]; While[Mod[Set[m, FromDigits[w + PadLeft[IntegerDigits[k, 2], i]]], 2^i] != 0, k++]; AppendTo[a, m], {i, 2, 18}]; a] (* Michael De Vlieger, Dec 10 2020 *)

Formula

a(n) = a(n-1)+10^(n-1)*(6-[a(n-1)/2^(n-1) mod 2]) i.e. a(n) ends with a(n-1); if (n-1)-th term is divisible by 2^n then n-th term begins with a 6, if not then n-th term begins with a 5.
Conjecture: a(n) = 10^n - A035014(n). - J. Lowell, Nov 16 2020

A053337 a(n) contains n digits (either '6' or '7') and is divisible by 2^n.

Original entry on oeis.org

6, 76, 776, 7776, 67776, 667776, 6667776, 66667776, 766667776, 6766667776, 66766667776, 666766667776, 7666766667776, 77666766667776, 777666766667776, 7777666766667776, 77777666766667776, 777777666766667776
Offset: 1

Views

Author

Henry Bottomley, Mar 06 2000

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Select[FromDigits/@Tuples[{6,7},n],Divisible[#,2^IntegerLength[ #]]&], {n,18}]//Flatten (* Harvey P. Dale, Jul 10 2016 *)

Formula

a(n)=a(n-1)+10^(n-1)*(6+[a(n-1)/2^(n-1) mod 2]) i.e. a(n) ends with a(n-1); if (n-1)-th term is divisible by 2^n then n-th term begins with a 6, if not then n-th term begins with a 7.

A053377 a(n) contains n digits (either '3' or '8') and is divisible by 2^n.

Original entry on oeis.org

8, 88, 888, 3888, 33888, 333888, 3333888, 83333888, 383333888, 3383333888, 33383333888, 833383333888, 8833383333888, 88833383333888, 888833383333888, 8888833383333888, 88888833383333888, 888888833383333888
Offset: 1

Views

Author

Henry Bottomley, Mar 06 2000

Keywords

Crossrefs

Programs

  • Mathematica
    Flatten[Table[Select[FromDigits/@Tuples[{3,8},n],Divisible[#,2^n]&],{n,18}]] (* Harvey P. Dale, Dec 25 2015 *)

Formula

a(n)=a(n-1)+10^(n-1)*(8-5*[a(n-1)/2^(n-1) mod 2]) i.e. a(n) ends with a(n-1); if (n-1)-th term is divisible by 2^n then n-th term begins with an 8, if not then n-th term begins with a 3.
Previous Showing 11-20 of 23 results. Next