cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-33 of 33 results.

A363969 Expansion of Sum_{k>0} k^2 * x^(2*k-1) / (1 - x^(2*k-1)).

Original entry on oeis.org

1, 1, 5, 1, 10, 5, 17, 1, 30, 10, 37, 5, 50, 17, 78, 1, 82, 30, 101, 10, 142, 37, 145, 5, 179, 50, 226, 17, 226, 78, 257, 1, 330, 82, 350, 30, 362, 101, 454, 10, 442, 142, 485, 37, 632, 145, 577, 5, 642, 179, 762, 50, 730, 226, 830, 17, 946, 226, 901, 78, 962, 257, 1191, 1, 1148, 330, 1157, 82
Offset: 1

Views

Author

Seiichi Manyama, Jun 30 2023

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, ((# + 1)/2)^2 &, OddQ[#] &]; Array[a, 100] (* Amiram Eldar, Jun 30 2023 *)
  • PARI
    a(n) = sumdiv(n, d, (d%2==1)*((d+1)/2)^2);

Formula

a(n) = Sum_{d|n, d==1 mod 2} ((d+1)/2)^2.

A374539 The sum of the squares of the infinitary divisors of n.

Original entry on oeis.org

1, 5, 10, 17, 26, 50, 50, 85, 82, 130, 122, 170, 170, 250, 260, 257, 290, 410, 362, 442, 500, 610, 530, 850, 626, 850, 820, 850, 842, 1300, 962, 1285, 1220, 1450, 1300, 1394, 1370, 1810, 1700, 2210, 1682, 2500, 1850, 2074, 2132, 2650, 2210, 2570, 2402, 3130, 2900
Offset: 1

Views

Author

Amiram Eldar, Jul 11 2024

Keywords

Comments

Also the sum of the infinitary divisors of n^2.

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := p^(2^Position[Reverse@IntegerDigits[e, 2], ?(# == 1 &)]); a[1] = 1; a[n] := Times @@ (Flatten@(f @@@ FactorInteger[n]) + 1); Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n), b); prod(i = 1, #f~, b = binary(2 * f[i, 2]); prod(k=1, #b, if(b[k], 1+f[i, 1]^(2^(#b-k)), 1)));}
    
  • Python
    from math import prod
    from sympy import factorint
    def A374539(n): return prod(p**(1<Chai Wah Wu, Jul 11 2024

Formula

a(n) = A049417(n^2).
a(n) <= A001157(n), with equality if and only if n is in A036537.
Multiplicative with a(p^e) = Product{k>=1, e_k=1} (p^(2^(k+1)) + 1), where e = Sum_{k} e_k * 2^k is the binary representation of e, i.e., e_k is bit k of e.
Sum_{k=1..n} a(k) ~ c * n^3 / 3, where c = Product_{P} (1 + 1/(P^2*(P+1))) = 1.14142906130350119631..., and P are numbers of the form p^(2^k) where p is prime and k >= 0 (A050376).

A380742 Even numbers m such that the sum of the squares of the odd divisors and the sum of the squares of even divisors of m are both squares.

Original entry on oeis.org

2, 574, 3346, 12474, 19598, 19710, 42770, 73062, 93310, 133630, 250510, 365330, 425898, 485758, 546530, 761022, 782690, 1254430, 1460290, 1628926, 2139790, 2174018, 2286954, 2332798, 2845154, 3185870, 3630146, 4562510, 5089394, 5444010, 5656770, 6265870, 6377618
Offset: 1

Views

Author

Michel Lagneau, Jan 31 2025

Keywords

Comments

Let s2 = 4*A001157(m/2) be the sum of the squares of the even divisors of m and s1 = A050999(m) be the sum of the squares of the odd divisors of m. We observe that s2/s1 = 4.

Examples

			574 is in the sequence because: its divisors are {1, 2, 7, 14, 41, 82, 287, 574}; the sum of squares of the odd divisors is 84100 which is square, and the sum of squares of the even divisors is 336400 which is square.
		

Crossrefs

Programs

  • Maple
    with(numtheory):nn:=10^7:
    for m from 2 by 2 to nn do:
     d:=divisors(m):
       s1:=0: s2:=0:
       for i in d do
        if i::odd then s1:=s1+i^2 else s2:=s2+i^2 fi
       od:
       if issqr(s2) and issqr(s1) then print(m) fi
     od:
  • Mathematica
    Select[Range[2,10^6,2],AllTrue[{Sqrt[Total[Select[Divisors[#],OddQ]^2]],Sqrt[Total[Select[Divisors[#],EvenQ]^2]]},IntegerQ]&] (* James C. McMahon, Feb 10 2025 *)
  • PARI
    isok(k) = !(k%2) && issquare(sumdiv(k, d, if (d%2, d^2))) && issquare(sumdiv(k, d, if (1-d%2, d^2))); \\ Michel Marcus, Feb 22 2025
Previous Showing 31-33 of 33 results.