cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 34 results. Next

A051115 Number of monotone Boolean functions of n variables with 7 mincuts.

Original entry on oeis.org

0, 0, 0, 0, 0, 490, 1308270, 1085660748, 483349680164, 147791677696350, 35419166732721930, 7189973830216081696, 1298090729995668204288, 215276329320562758744210, 33531967207612008887673350
Offset: 0

Views

Author

Vladeta Jovovic, Goran Kilibarda, Zoran Maksimovic

Keywords

References

  • J. L. Arocha, Antichains in ordered sets, (in Spanish) An. Inst. Mat. UNAM, vol. 27, 1987, 1-21.
  • V. Jovovic and G. Kilibarda, On the number of Boolean functions in the Post classes F^{mu}_8, Diskretnaya Matematika, 11 (1999), no. 4, 127-138 (translated in Discrete Mathematics and Applications, 9, (1999), no. 6)
  • V. Jovovic, G. Kilibarda, On enumeration of the class of all monotone Boolean functions, Belgrade, 1999, in preparation.

Crossrefs

A051116 Number of monotone Boolean functions of n variables with 8 mincuts.

Original entry on oeis.org

0, 0, 0, 0, 0, 115, 1613250, 4693213105, 5971431466764, 4657267944250425, 2654563364004395160, 1223795727111874798255, 485987045749653063943998, 173253367143529540187635315, 57037488183550191520963561230
Offset: 0

Views

Author

Vladeta Jovovic, Goran Kilibarda, and Zoran Maksimovic

Keywords

References

  • J. L. Arocha, Antichains in ordered sets, (in Spanish) An. Inst. Mat. UNAM, vol. 27, 1987, 1-21.
  • V. Jovovic and G. Kilibarda, On the number of Boolean functions in the Post classes F^{mu}_8, Diskretnaya Matematika, 11 (1999), no. 4, 127-138 (translated in Discrete Mathematics and Applications, 9, (1999), no. 6)
  • V. Jovovic, G. Kilibarda, On enumeration of the class of all monotone Boolean functions, Belgrade, 1999, in preparation.

Crossrefs

A051117 Number of monotone Boolean functions of n variables with 9 mincuts.

Original entry on oeis.org

0, 0, 0, 0, 0, 20, 1484230, 15946757960, 60089234465176, 122281201867047920, 168329227672583040430, 178185327268349957044060, 156921594738520322214197672, 121014019160263331691800711500
Offset: 0

Views

Author

Vladeta Jovovic, Goran Kilibarda, and Zoran Maksimovic

Keywords

References

  • J. L. Arocha, Antichains in ordered sets, (in Spanish) An. Inst. Mat. UNAM, vol. 27, 1987, 1-21.
  • V. Jovovic and G. Kilibarda, On the number of Boolean functions in the Post classes F^{mu}_8, Diskretnaya Matematika, 11 (1999), no. 4, 127-138 (translated in Discrete Mathematics and Applications, 9, (1999), no. 6)
  • V. Jovovic, G. Kilibarda, On enumeration of the class of all monotone Boolean functions, Belgrade, 1999, in preparation.

Crossrefs

A059119 Triangle a(n,m)=number of m-element antichains on a labeled n-set; number of monotone n-variable Boolean functions with m mincuts (lower units), m=0..binomial(n,floor(n,2)).

Original entry on oeis.org

1, 1, 1, 2, 1, 4, 1, 1, 8, 9, 2, 1, 16, 55, 64, 25, 6, 1, 1, 32, 285, 1090, 2020, 2146, 1380, 490, 115, 20, 2, 1, 64, 1351, 14000, 82115, 304752, 759457, 1308270, 1613250, 1484230, 1067771, 635044, 326990, 147440, 57675, 19238, 5325, 1170, 190, 20, 1, 1
Offset: 0

Views

Author

Vladeta Jovovic, Goran Kilibarda, Jan 06 2001

Keywords

Comments

Row sums give A000372.

Examples

			[1, 1],
[1, 2],
[1, 4, 1],
[1, 8, 9, 2],
[1, 16, 55, 64, 25, 6, 1],
[1, 32, 285, 1090, 2020, 2146, 1380, 490, 115, 20, 2], ...
		

References

  • V. Jovovic, G. Kilibarda, On enumeration of the class of all monotone Boolean functions, in preparation.

Crossrefs

Formula

a(n, 0) = 1; a(n, 1) = 2^n; a(n, 2) = A016269(n); a(n, 3) = A047707(n); a(n, 4) = A051112(n); a(5, n) = A051113(n); a(6, n) = A051114(n); a(7, n) = A051115(n); a(8, n) = A051116(n); a(9, n) = A051117(n); a(10, n) = A051118(n).

A056104 Number of 9-antichain covers of a labeled n-set.

Original entry on oeis.org

20, 1484110, 15936368770, 59961701958816, 121740972715475096, 167109117756164222210, 176340421320592288902670, 154794453668193645059165412, 118987888829384136293188343172
Offset: 6

Views

Author

Vladeta Jovovic, Goran Kilibarda, Zoran Maksimovic, Jul 29 2000

Keywords

References

  • V. Jovovic and G. Kilibarda, On the number of Boolean functions in the Post classes F^{mu}_8, Diskretnaya Matematika, 11 (1999), no. 4, 127-138 (translated in Discrete Mathematics and Applications, 9, (1999), no. 6)
  • V. Jovovic, G. Kilibarda, On enumeration of the class of all monotone Boolean functions, in preparation.

Crossrefs

A094036 Number of connected 5-element antichains on a labeled n-set.

Original entry on oeis.org

0, 0, 0, 0, 6, 2005, 280971, 22795136, 1345702092, 65250058251, 2781911443317, 108660434574142, 3991349973006198, 140293749275697017, 4775521611056597583, 158758002632650598268, 5185922974307536588224
Offset: 0

Views

Author

Goran Kilibarda, Vladeta Jovovic, Apr 22 2004

Keywords

Crossrefs

Formula

E.g.f.: (exp(31*x)-20*exp(23*x)+60*exp(19*x)+20*exp(17*x)
+5*exp(16*x)-105*exp(15*x)-120*exp(14*x)+150*exp(13*x)+180*exp(12*x)
-300*exp(11*x)-110*exp(10*x)+380*exp(9*x)+160*exp(8*x)-575*exp(7*x)
+570*exp(6*x)-186*exp(5*x)-975*exp(4*x)+1645*exp(3*x)-1030*exp(2*x)
+274*exp(x)-24)/5!.

A094034 Number of connected 3-element antichains on a labeled n-set.

Original entry on oeis.org

0, 0, 0, 1, 38, 645, 7510, 71981, 617358, 4947685, 37972070, 283229661, 2072354878, 14964711125, 107078983830, 761312910541, 5388481567598, 38017703680965, 267622831854790, 1880882526962621, 13203901505935518, 92616363612417205
Offset: 0

Views

Author

Goran Kilibarda, Vladeta Jovovic, Apr 22 2004

Keywords

Crossrefs

Programs

  • Mathematica
    With[{nmax = 50}, CoefficientList[Series[(Exp[7*x] - 6*Exp[5*x] + 3*Exp[4*x] + 14*Exp[3*x] - 21*Exp[2*x] + 11*Exp[x] - 2)/3!, {x, 0, nmax}], x] Range[0, nmax]!] (* G. C. Greubel, Oct 07 2017 *)
    LinearRecurrence[{22,-190,820,-1849,2038,-840},{0,0,0,1,38,645,7510},30] (* Harvey P. Dale, Sep 20 2022 *)
  • PARI
    x='x+O('x^50); concat([0,0,0], Vec(-x^3*(5*x+1)*(56*x^2-11*x-1)/( (x-1)*(2*x-1)*(3*x-1)*(4*x-1)*(5*x-1)*(7*x-1)))) \\ G. C. Greubel, Oct 07 2017

Formula

E.g.f.: (exp(7*x) - 6*exp(5*x) + 3*exp(4*x) + 14*exp(3*x) - 21*exp(2*x) + 11*exp(x) -2)/3!.
G.f.: -x^3*(5*x+1)*(56*x^2-11*x-1) / ((x-1)*(2*x-1)*(3*x-1)*(4*x-1)*(5*x-1)*(7*x-1)). - Colin Barker, Nov 27 2012

A094035 Number of connected 4-element antichains on a labeled n-set.

Original entry on oeis.org

0, 0, 0, 0, 20, 1655, 65305, 1794730, 40179930, 793030245, 14423331635, 248261291960, 4113063835540, 66327037011235, 1049050826515965, 16360528085273190, 252545239130514350, 3869090307434050625, 58948119057416280295, 894447719738683138420
Offset: 0

Views

Author

Goran Kilibarda, Vladeta Jovovic, Apr 22 2004

Keywords

Crossrefs

Programs

  • Mathematica
    With[{nmax = 50}, CoefficientList[Series[(Exp[15*x] - 12*Exp[11*x] + 24*Exp[9*x] - 14*Exp[7*x] + 27*Exp[6*x] - 60*Exp[5*x] - 24*Exp[4*x] + 155*Exp[3*x] - 141*Exp[2*x] + 50*Exp[x] - 6)/4!, {x, 0, nmax}], x] Range[0, nmax]!] (* G. C. Greubel, Oct 07 2017 *)
  • PARI
    x='x+O('x^50); concat([0,0,0,0], Vec(serlaplace((exp(15*x) -12*exp(11*x) +24*exp(9*x) -14*exp(7*x) +27*exp(6*x) -60*exp(5*x) -24*exp(4*x) +155*exp(3*x) -141*exp(2*x) +50*exp(x) -6)/4!))) \\ G. C. Greubel, Oct 07 2017
    
  • PARI
    concat(vector(4), Vec(5*x^4*(4+79*x-988*x^2-4414*x^3+52260*x^4-8721*x^5-374220*x^6) / ((1-x)*(1-2*x)*(1-3*x)*(1-4*x)*(1-5*x)*(1-6*x)*(1-7*x)*(1-9*x)*(1-11*x)*(1-15*x)) + O(x^30))) \\ Colin Barker, Oct 13 2017

Formula

E.g.f.: (exp(15*x) - 12*exp(11*x) + 24*exp(9*x) - 14*exp(7*x) + 27*exp(6*x) - 60*exp(5*x) - 24*exp(4*x) + 155*exp(3*x) - 141*exp(2*x) + 50*exp(x) - 6)/4!.
G.f.: 5*x^4*(4+79*x-988*x^2-4414*x^3+52260*x^4-8721*x^5-374220*x^6) / ((1-x)*(1-2*x)*(1-3*x)*(1-4*x)*(1-5*x)*(1-6*x)*(1-7*x)*(1-9*x)*(1-11*x)*(1-15*x)). - Colin Barker, Oct 13 2017

A084870 Number of 3-multiantichains of an n-set.

Original entry on oeis.org

1, 2, 6, 28, 190, 1692, 16766, 166028, 1586430, 14580412, 129654526, 1123451628, 9544185470, 79881877532, 661135445886, 5425962250828, 44250287565310, 359161631645052, 2904756409742846, 23429320590259628, 188594431902253950
Offset: 0

Views

Author

Goran Kilibarda, Vladeta Jovovic, Jun 10 2003

Keywords

Crossrefs

Programs

  • Magma
    [(8^n - 6*6^n + 6*5^n + 9*4^n - 18*3^n + 14*2^n)/6: n in [0..50]]; // G. C. Greubel, Oct 08 2017
  • Mathematica
    Table[(8^n - 6*6^n + 6*5^n + 9*4^n - 18*3^n + 14*2^n)/6, {n, 0, 50}] (* G. C. Greubel, Oct 08 2017 *)
  • PARI
    for(n=0,50, print1((8^n - 6*6^n + 6*5^n + 9*4^n - 18*3^n + 14*2^n)/6, ", ")) \\ G. C. Greubel, Oct 08 2017
    

Formula

a(n) = (1/3!)*(8^n - 6*6^n + 6*5^n + 9*4^n - 18*3^n + 14*2^n).
G.f.: ( 1-26*x+265*x^2-1330*x^3+3340*x^4-3432*x^5 ) / ( (6*x-1)*(4*x-1)*(3*x-1)*(2*x-1)*(8*x-1)*(5*x-1) ). - R. J. Mathar, Jul 08 2011

A084882 Number of (k,m,n)-multiantichains of multisets with k=3 and m=5.

Original entry on oeis.org

1, 3, 51, 4129, 1439381, 814788851, 395927618035, 155157302244381, 51960586962031617, 15663181302847575559, 4402571746033946222639, 1180812802393866826858193, 306839347397532891662028733
Offset: 0

Views

Author

Goran Kilibarda, Vladeta Jovovic, Jun 10 2003

Keywords

Comments

By a (k,m,n)-multiantichain of multisets we mean an m-multiantichain of k-bounded multisets on an n-set. The elements of a multiantichain could have the multiplicities greater than 1. A multiset is called k-bounded if every its element has the multiplicity not greater than k-1.

Crossrefs

Programs

  • Mathematica
    Table[(1/5!)*(243^n - 20*162^n + 60*126^n + 20*108^n + 10*98^n - 120*93^n - 120*84^n + 30*81^n + 30*78^n + 120*77^n + 120*70^n - 120*63^n + 20*56^n - 360*54^n + 720*42^n + 120*36^n - 720*31^n + 275*27^n + 180*26^n - 1650*18^n + 1650*14^n + 870*9^n - 1740*6^n + 744*3^n), {n, 0, 50}] (* G. C. Greubel, Oct 08 2017 *)

Formula

a(n) = (1/5!)*(243^n - 20*162^n + 60*126^n + 20*108^n + 10*98^n - 120*93^n - 120*84^n + 30*81^n + 30*78^n + 120*77^n + 120*70^n - 120*63^n + 20*56^n - 360*54^n + 720*42^n + 120*36^n - 720*31^n + 275*27^n + 180*26^n - 1650*18^n + 1650*14^n + 870*9^n - 1740*6^n + 744*3^n).
Previous Showing 11-20 of 34 results. Next